
3D RECONSTRUCTION OF ARCHITECTURAL SCENES FROM UNCALIBRATED
VIDEO SEQUENCES

Jan-Michael Frahm1, Marc Pollefeys2, Brian Clipp1, David Gallup1, Rahul Raguram1, ChangChang Wu1, and Christopher Zach1

1Department of Computer Science 2Department of Computer Science
The University of North Carolina at Chapel Hill ETH Zürich

CB 3175, Chapel Hill, NC 27599 USA Universitatstrasse 6, CH-8092 Zürich, Switzerland
{jmf,bclipp,gallup,rraguram,ccwu,cmzach}@cs.unc.edu marc.pollefeys@inf.ethz.ch

KEY WORDS: structure from motion, 3d reconstruction, self-calibration, bundle-adjustment, gpgpu

ABSTRACT:

In this paper we present a system for three-dimensional reconstruction of architectural scenes from uncalibrated videos. These videos
might be recorded using hand-held cameras, downloaded from the internet or taken from archival sources. Because we do not require
prior knowledge of the camera’s internal parameters such as focal length, center of projection, and radial distortion we can deal with
videos from uncontrolled sources. We present fast algorithms for 2D feature tracking on the GPU, real-time robust estimation and
bundle adjustment. We also demonstrate a new type of feature, the viewpoint invariant patch (VIP), in its application to loop detection
and closing.

1 INTRODUCTION

In recent years, the topic of creating 3D reconstructions of build-
ings and landmarks from image and video data has received much
attention. Some of these systems use video data in conjunction
with GPS/INS information and produce detailed 3D models in the
form of textured polygonal meshes, in real-time (Pollefeys et al.,
2008). Other systems have been developed that leverage internet
photo collections and produce sparse reconstructions of various
landmarks, which may then be used for visualization (Snavely
et al., 2008, Li et al., 2008). Applications such as Google Earth
and Microsoft Virtual Earth have been very successful in deliver-
ing effective visualizations of large scale models based on aerial
and satellite imagery to a broad audience. Enormous amounts of
video and image data are collected every day, using a variety of
recording devices. Both the sheer volume of data, along with the
large variation in recording devices, pose significant challenges
for systems that collect, process and visualize this information.

In this paper, we introduce a system for three-dimensional recon-
struction of architectural scenes from uncalibrated videos. These
videos might be recorded using hand-held cameras, downloaded
from the internet or taken from archival sources. Because we
do not require prior knowledge of the camera’s internal param-
eters such as focal length, center of projection, and radial dis-
tortion we can deal with videos from uncontrolled sources. Our
approach uses computationally efficient components and compu-
tation strategies to achieve real-time processing for various stages
of the reconstruction pipeline. While the system in (Pollefeys et
al., 2008) made use of calibrated cameras along with GPS/INS in-
formation, the current system is capable of handling uncalibrated
cameras, and uses purely visual data.

Reconstruction from uncontrolled video poses several challenges,
since cameras are typically in auto-exposure mode, which breaks
the standard assumption of image brightness constancy. In ad-
dition, the radiometric calibration of the camera is typically un-
known, implying that the appearance change of the scene could
potentially be non-linear. Since we do not use precalibrated cam-
eras, the intrinsic parameters of the cameras are unknown and can
potentially even vary over time. Given the incremental nature of
video-based structure-from-motion algorithms, systems tend to
accumulate drift, which can only be compensated through image

based topology detection. The system we present tackles all these
challenges with efficient techniques to produce an initial video
based 3D reconstruction. Following this, video-based topology
detection is performed in near real-time, to identify loops in the
video sequence. The final step of global error mitigation through
efficient bundle adjustment is performed as a post-processing on
the full extracted model, or large partial models.

The paper is organized as follows: Section 2 is an overview of
our system; Section 3 briefly presents related work; Section 3 de-
scribes the various modules of the reconstruction pipeline. Sec-
tion 4 contains results and Section 5 concludes the paper.

2 SYSTEM OVERVIEW

In this section, we provide a brief overview of the 3D reconstruc-
tion system. A more detailed description of the various modules
follows in later sections of the paper.

1. 2D tracking of salient image features: This constitutes
the first module of the processing pipeline, where we ob-
tain tracked feature correspondences over consecutive video
frames, potentially belonging to the same 3D point. This
module runs on the GPU and is capable of tracking 1000
features at speeds exceeding 200Hz on recent GPU hard-
ware (Zach et al., 2008). The tracker module also estimates
the gain of the camera, since for outdoor sequences, the abil-
ity to compensate for brightness change is often valuable.

2. Estimation of camera parameters: We seek to operate
with video data acquired from uncontrolled sources, and
thus employ a simple technique to recover the parameters
of the camera. Given that the quality of the reconstruction
depends primarily on the focal length, we use the technique
from (Mendonca and Cipolla, 1999) to estimate this param-
eter, while assuming standard values for the remaining in-
trinsics (i.e., principal point in the center of the image, zero
skew, and unit aspect ratio). Once this has been obtained, we
compute a sparse reconstruction of a segment of the video
and perform bundle adjustment to obtain an estimate of the
radial distortion. This can be thought of as a preprocess-
ing step, performed once on a subset of the sequence, after

which we assume that the intrinsics are fixed. The entire
video sequence is then processed using the estimated cam-
era parameters to obtain the final 3D model.

3. 3D camera pose estimation: Given the camera intrinsics,
the full video sequence is fed into the reconstruction pipeline,
starting with 2D tracking. Given 2D feature correspondences
between consecutive frames, we can estimate the pose of the
camera by using visual odometry techniques (Nister, 2004,
Haralick et al., 1994). In addition, we employ a fast and
accurate technique for robust estimation (Raguram et al.,
2008), which provides the ability to reliably estimate cam-
era pose over a wide range of inlier ratios, in real-time.

4. Stereo depth estimation: The stereo module computes depth
maps from the camera pose information and the images, us-
ing a fast GPU implementation of an advanced multi-view
plane sweeping stereo algorithm. Our algorithm has pro-
visions to deal with nonfronto-parallel surfaces, occlusions
and gain changes.

5. Depth map fusion: Following stereo, this module combines
multiple depth maps to reject erroneous depth estimates and
remove redundancy from the data, resulting in a more accu-
rate and smaller in size set of depth maps.

6. Model generation: This module creates a triangular mesh
for each fused depth map and determines the texture map-
ping. It also removes duplicate representations of the same
surface and fills some of the holes.

7. Viewpoint Invariant Patch Extraction and Matching: The
viewpoint invariant patch (VIP) (Wu et al., 2008) consti-
tutes an extension of wide baseline features into three di-
mensions. Model matching with VIPs forms the basis for
robust loop detection and closing in our reconstruction sys-
tem. Given a video sequence taken of the outer walls of a
building that overlaps at the ends, we can generate a series
of locally accurate 3D models of the building using the steps
outlined above. These 3D models can then be matched using
VIP features to find the loops in the video.

8. Bundle adjustment: The 3D models generated by the mod-
ules described above are obtained by using relatively local
information from the images. Thus, the reconstructed mod-
els and the estimated camera poses do not accurately match
the measurements in the images. In order to obtain results
with the highest possible accuracy, an additional non-linear
optimization step, generally referred to as bundle adjust-
ment, is applied at various stages in the processing pipeline.

3 3D RECONSTRUCTION SYSTEM

3.1 Focal Length Estimation

In order to allow for flexibility with respect to producing recon-
structions from uncontrolled video sources, we employ self cal-
ibration to recover the camera intrinsics. We perform this as a
preprocessing step, which is done once on a subset of the video
sequence. A commonly used technique for self calibration is to
first build up a projective reconstruction and then upgrade this to
a metric reconstruction by imposing constraints on the intrinsic
camera parameters, such as constant intrinsics (Faugeras et al.,
1992, Triggs, 1997) or assuming that some intrinsics are known
and others vary (Pollefeys and Gool, 1999, Pollefeys et al., 1999).
We circumvent the issue of maintaining a projective reconstruc-
tion by employing a simpler technique based on (Mendonca and

Table 1: Estimated focal lengths for two sample sequences, be-
fore and after bundle adjustment.

Using Self-calibration Self-calibration
calibration pattern (before bundle) (after bundle)

Focal length 1316.1 1417.9 1347.2
(sequence 1)
Focal length 1339.9 1092.6 1353.8
(sequence 2)

Cipolla, 1999), which leverages properties of the essential ma-
trix to recover camera intrinsics. In particular, we recover the
focal length of the camera (which is assumed to be constant over
the length of the video), while assuming the other intrinsics are
known.

The technique works by translating constraints on the essential
matrix into constraints on the intrinsics, thus allowing a search in
the space of intrinsic parameters in order to minimize a cost func-
tion related to the constraints. By considering a segment of video
containing at least n frames, satisfying nnk + (n − 1)nf ≥ 8
(where nk is the number of known intrinsics and nf is the num-
ber of unknown, but fixed, intrinsics), we compute a set of fun-
damental matrices by matching points pairwise. Since for a pair
of views i, j, the essential matrix is related to the fundamental
matrix as Ei,j = KT

j Fi,jKi, constraints on the essential matrix
are translated into constraints on the calibration matrices Ki and
Kj . It is then possible to establish a cost function to be mini-
mized in the entries of the calibration matrices Ki, i = 1, ..., n.
Additional details regarding this technique may be obtained from
(Mendonca and Cipolla, 1999).

Note that the procedure described above does not account for ra-
dial distortion, which in practice significantly affects the quality
of the reconstruction. We use bundle adjustment (described in
Section 3.3) in order to perform efficient non-linear optimiza-
tion of intrinsic camera parameters, and also to account for the
non-linear radial-distortion of the camera lens. Sample results
for focal length estimation on two sequences are shown in Ta-
ble 1. After the computation of the intrinsic camera parameters
and the two-view relations a sparse Euclidian reconstruction is
established, as described below. This provides a camera path that
globally accumulates drift over time but is locally virtually drift
free. The system deploys this fact to estimate local geometry that
is a correct approximation of the local 3D scene.

3.2 Initial Sparse Structure From Motion

After the preprocessing step that estimates the focal length and
remaining camera calibration parameters, we assume a fully in-
ternally calibrated camera in the following steps to robustify the
estimation process.

3.2.1 GPU-Accelerated KLT Tracking With Camera Gain
Estimation Tracking of simple corner-like features in a video
sequence (Lucas and Kanade, 1981, Shi and Tomasi, 1994) is
still often applied due to its simplicity and its excellent runtime
performance. In particular, augmented reality applications (e.g.
using the OpenVIDIA framework (Hill et al., 2004, Fung et al.,
2005)) and high performance scene reconstruction from streamed
video (Pollefeys et al., 2008) require very fast detection of interest
points and subsequent search for potential correspondences from
a video source.

For best run-time performance we employ a GPU-based imple-
mentation of feature detection and tracking. In addition, we relax
the brightness constancy assumption between images and allow
slowly varying camera exposure settings in the image sequence.
Assuming a linear camera response function, the varying bright-
ness of pixels can be corrected by multiplication with a single

 3

 4

 5

 6

 7

 8

 9

 20 30 40 50 60 70 80

F
ra

m
e

ti
m

e
(m

se
c)

Frame no.

With gain estimation (8800 Ultra)
W/o gain estimation (8800 Ultra)

Figure 1: Observed frame times for tracking up to 1000 features
on a Geforce 8800 Ultra (with and without simultaneous gain
estimation).

gain ratio value globally valid over the full image. The method
proposed in (Kim et al., 2007) for simultaneous tracking and
camera gain estimation relies on sequential and therefore CPU-
based computations. A full data-parallel approach for simulta-
neous tracking and gain determination and the respective GPU
implementation is presented in (Zach et al., 2008). In summary,
the estimation of a global gain ratio parameter between images is
replaced by a parallel estimation of a gain value for each feature
track. The estimated gain changes existing in parallel are globally
regularized to obtain one consistent estimate for all feature tracks.
This method essentially corresponds to a block Jacobi approach
for a data-parallel and iterative solution procedure for linear sys-
tems of equations. Lost tracks or newly appearing features are
frequently detected by computing the respective cornerness mea-
sure. Putative new features are subject to a spatial non-maximum
suppression scheme, and feature positions are extracted by a hi-
erarchical compaction approach (Ziegler et al., 2006).

Tracking of up to 1000 features with simultaneous gain estima-
tion can be done at frame rates exceeding 200Hz on recent GPU
hardware. Fig. 1 displays the measured frame times on a Geforce
8800 Ultra with and without simultaneous gain estimation en-
abled. The regularly occuring peaks correspond to increased run-
time during feature redetection. In many outdoor sequences the
ability to compensate for brightness changes is very valuable.
The accuracy of the gain changes reported by our feature tracker
in comparison to the camera reported values is visualized in Fig.
2.

3.2.2 3D camera pose estimation using ARRSAC Given the
2D feature correspondences across video frames, the next step in
the processing pipeline is the estimation of camera poses. In this
system we rely purely on visual input, and thus the camera poses
are obtained up to scale. Visual odometry is a well-studied prob-
lem, and we use efficient implementations of various techniques
to perform pose estimation. In particular, the camera tracker
is initialized using the 5-point algorithm (Nister, 2004), which
computes the relative pose of three views, given the 2D corre-
spondences between them. Following this, 3D points are trian-
gulated, and subsequent camera poses are estimated from 2D-3D
correspondences by the 3-point method (Haralick et al., 1994).

To provide robustness to noise and outliers we use ARRSAC
(Raguram et al., 2008), which is a real-time RANSAC frame-
work which provides reliable robust estimation within a fixed
time-budget. The technique combines the breath-first paradigm
of preemptive RANSAC (Nister, 2003) with a depth-first strategy
to quickly discard contaminated hypotheses (Matas and Chum,
2005). While traditional RANSAC techniques face the problem

of having to generate a very large number of hypotheses for low
inlier ratios, we adopt a non-uniform sampling strategy (Chum
and Matas, 2005) to preferentially generate better hypotheses ear-
lier on in the sampling process. Since operating within a fixed
time budget effectively places an upper limit on the maximum
number of hypotheses that may be evaluated, incorporating prior
knowledge into the sampling process allows us to perform reli-
able estimation in real-time, even for very low inlier ratios. In
practice, ARRSAC operates well within the enforced time bud-
get, with estimation speeds ranging between 55-350 Hz, depend-
ing on the inlier ratio.

3.3 Sparse Bundle Adjustment

The initial sparse model generated by the methods described in
the previous sections is obtained by using relatively local infor-
mation from the images. Therefore, the reconstructed sparse 3D
model and the estimated camera poses do not accurately match
the measurements in the images, i.e. the overall reprojection error
is typically larger than one pixel. In order to obtain results with
the highest possible accuracy, an additional refinement proce-
dure, generally referred as bundle adjustment, is necessary. Bun-
dle adjustment is a non-linear optimization method, which not
only tackles the error in camera calibration and their respective
poses, but also refines the inaccuracies in the 3D points and the
2D tracks. It incorporates all available knowledge—initial cam-
era parameters and poses, image correspondences and optionally
other known applicable constraints—, and minimizes a global er-
ror criterion over a large set of adjustable parameters, in particu-
lar the camera poses, the 3D structure, and optionally the intrinsic
calibration parameters. In general, bundle adjustment delivers 3D
models with sub-pixel accuracy, e.g. an initial mean reprojection
error in the order of pixels is typically reduced to 0.2 or even
0.1 pixels mean error. Thus, the estimated two-view geometry is
better aligned with the actual image features, and dense 3D mod-
els show a significantly higher precision. The major challenges
with a bundle adjustment approach are the huge numbers of vari-
ables in the optimization problem and (to a lesser extent) the non-
linearity and non-convexity of the objective function. The first is-
sue is addressed by sparse representation of matrices and by uti-
lizing appropriate numerical methods. Sparse techniques are still
an active research topic in the computer vision and photogram-
metry community (Dellaert and Kaess, 2006, Engels et al., 2006,
Ni et al., 2007, Kaess et al., 2008).

Our implementation of sparse bundle adjustment1 largely follows
(Dellaert and Kaess, 2006) by utilizing sparse Cholesky decom-
position methods in combination with a suitable column reorder-
ing scheme (Davis et al., 2004). For large data sets this approach
is considerably faster than bundle adjustment implementation us-
ing dense matrix factorization after applying the Schur comple-
ment method (e.g. (Lourakis and Argyros, 2004)). Our imple-
mentation requires less than 20min to perform full bundle ad-
justment on a 1700 image data set (which amounts to 0.7sec per
image). This timing result refers to full bundle adjustment for
the complete data set, which is only required in combination with
loop detection. In many applications a “streaming” version of
bundle adjustment only optimizing the recently added views and
3D points is sufficient. Such a reduced bundle adjustment opti-
mizing the 10 recently added poses and the respective 3D struc-
ture achieves 50 frames per second.

Since only weak calibration information is available from cam-
era self-calibration, it is an absolute necessity to adjust the cam-
era intrinsics as well. Often, the zoom of the camera does not
vary appreciably within the sequence of interest and accordingly

1available in source at http://cs.unc.edu/∼cmzach/opensource.html

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 0 50 100 150 200 250 300

G
ai

n
 r

at
io

Frame no.

Camera reported
µ0 = 40, tau = 2

Figure 2: Camera reported ground truth gain ratios (blue) and estimated ones returned by the proposed feature tracking approach (red).

we can assume fixed intrinsics for the camera (or set of cam-
eras). Enforcing common intrinsic parameters where appropriate
is highly beneficial for the quality of the final reconstruction. In
the case where the camera parameters change over the duration
of the sequence, we can optimize separate sets of parameters for
each camera, which potentially increases the noise sensitivity of
the estimation process.

3.4 Dense Model Generation

After the initial sparse bundle adjustment we have a set of camera
poses which have a high degree of local accuracy but still suffer
from long term error accumulation. In order to reduce this, we
must find areas of the video that view the same scene structure at
distinct parts of the video. The simplest of these cases is when
the camera moves in a loop such as recording the facades around
a building. Once we have detected the same structure in two parts
of the video we can use a final bundle adjustment to reduce the
accumulated camera error and arrive at a maximum a-posteriori
approximation of the scene structure and camera path.

Detecting loops in our system involves first generating locally
accurate estimates of the dense scene geometry. In contrast to
sparse geometry which only estimates the scene structure for a
few distinctive scene features, dense estimation attempts to find
the scene depth for every pixel in a set of key frames. The key
frames are selected such that combining their depth maps pro-
vides a continuous coverage of the scene geometry.

Dense estimation is broken into two steps, both of which leverage
the parallel computation power of the GPU to significantly speed
up computation. The two stages are a plane sweeping, multi-view
stereo algorithm which generates depthmaps and a depthmap fu-
sion algorithm. The stereo algorithm works by back projecting a
set of n images taken from known camera poses onto a plane in
the scene. Where the plane intersects the scene structure all of
the back-projected images will be locally similar but where the
scene structure does not intersect the plane the back-projected
images will differ significantly. By moving this back-projection
plane through the scene we generate a correlation volume which
gives us an estimate of the scene depth over a volume. Taking
the minimum in this volume along the rays of one central camera
gives us a depthmap for that central camera. We calculate these
depthmaps in a sliding window through the video sequence us-
ing the GPU, taking advantage of the parallel nature of the plane
sweeping stereo algorithm to speed the computation.

The second step in dense model generation is depth map fusion.
This step takes a set of depthmaps which overlap, giving multiple
measurements of the same scene structure. While plane sweep-
ing stereo is fast it is also susceptible to noise. However, by look-
ing for consensus between multiple depthmaps we can arrive at
a final depthmap which is much more accurate than any of the
individual stereo depthmaps. Consensus is measured based on
occlusion relationships. More details on depthmap fusion can be

found in (Merrell et al., 2007). Following depth map fusion we
extract and match viewpoint invariant patches to detect loops.

3.5 Viewpoint Invariant Patch Extraction and Matching

The viewpoint invariant patch (VIP) is an extension of wide base-
line features (SIFT (Lowe, 1999), MSER (Matas et al., 2002))
into three dimensions. These features are designed to find image
regions that “look” the same from a variety of viewing directions
(by “look”, we mean have a similar feature descriptor). While
typical wide baseline features are extracted in the image, VIP fea-
tures are extracted on textured 3D surface patches. Extraction of
VIP features starts with a multiple-view reconstruction of a scene
which gives scene depth and texture from at least one viewpoint.
From the scene depth locally quasi-planar regions are found and
texture is applied to a plane fit to the local geometry. This textured
surface is then projected into a camera which is fronto-parallel to
the planar surface and uses an orthographic projection. We refer
to this normalized view as an ortho-texture.

Once we have an ortho-texture we calculate whether the ortho-
texture contains a scale space maxima in a way similar to SIFT.
We then calculate the dominant gradient direction in the ortho-
texture which, combined with the surface normal, defines the ro-
tation of a local coordinate system attached to the surface. The
depth of the scene point then gives the relative translation to the
camera center of the VIP’s local coordinate frame. Additionally,
the size of the scale space maxima fixes the feature’s relative scale
to any other feature. Finally, we calculate a descriptor for the
VIP feature based on the ortho-texture. Because the VIP fea-
ture is so information rich only one feature match is required to
find the alignment between two 3D models. Given two 3D mod-
els of the same scene we can find a relative similarity transform
between the two models using one feature correspondence be-
cause each feature includes its own local coordinate frame. This
greatly speeds up model alignment and matching. Further we can
find the model alignment in a hierarchical fashion, starting with
alignment in scale, then rotation and finally translation.

Repetitive features can actually help in aligning models. For ex-
ample, a brick wall is highly repetitive. Even if two bricks are
incorrectly matched based on their descriptors the relative scal-
ing of the bricks will still match the relative scaling of the model.
Rotation also has this same property in many architectural scenes.
Two windows that are mismatched will probably have the same
orientation in space as the rest of the windows on a structure.
After aligning scale and rotation it is much easier to find the cor-
rect common translation between two models. Model matching
is the basis for robust loop detection and closing in our recon-
struction system. Given a video sequence taken of the outer walls
of a building that overlaps at the ends we can generate a series of
locally accurate 3D models of the building using structure from
motion. These 3D models can then be matched using VIP fea-
tures to find the loops in the video. Later we show the results of
one such loop detection and closing.

Figure 3: Representative frames from the ‘Baity Hill’ video se-
quence.

Efficient feature matching is also a concern for our system. We
match VIP features based on their descriptor. A large scene such
as a city center will contain many thousands of VIP features.
Matching all those descriptors to each other would have a quadratic
computational cost. We take a more efficient approach by using a
vocabulary tree to find likely matches in a manner similar to (Nis-
ter and Stewenius, 2006, Fraundorfer et al., 2007). A vocabulary
tree is built by applying K-means clustering to the high dimen-
sional features in a hierarchical way. Starting with all features
they are clustered into ten clusters in our implementation. Each
of these ten clusters is then broken into another ten clusters. To
find feature matches we determine if they map to the same leaf
of the vocabulary tree. With one-hundred thousand clusters in a
tree with a branching factor of ten and height 5 we reduce the
comparisons necessary to find two features which are likely to
match from n (the number of total features to compare) to 50.
This offers a significant cost savings.

3.6 Final Bundle Adjustment and Dense Model Generation

Following VIP detection and matching we do another sparse bun-
dle adjustment with the addition of the measurements of the VIP
feature matches to the minimization. This bundle adjustment
gives us a final sparse model of the scene and camera poses.
We then do a final dense model generation using the same plane
sweeping stereo and fusion as described previously to arrive at
our final resulting model of the architectural scene.

4 EXPERIMENTAL RESULTS

In this section, we show some sample results obtained using the
3D reconstruction pipeline described in this paper. We have suc-
cessfully processed videos at a number of resolutions and frame-
rates, using uncalibrated cameras. The ‘Baity Hill’ video se-
quence (Figure 3) consists of images of resolution 1024x768,
collected at 30 frames per second. Figure 4 show 2D tracks (in
green) produced by the 2D tracker module running on the GPU.
These 2D tracks, along with the estimated focal length from self-
calibration are then used to generate an initial sparse reconstruc-
tion. Figure 5 shows the sparse reconstruction for the ‘Baity
Hill’ sequence, obtained using the estimated focal length. The
figure shows the model before bundle adjustment is performed.
It should be noted that this model shows a large deviation from
ground truth, mainly due to inaccurate focal length, along with
radial distortion in the images. Figure 6 shows the sparse recon-
struction after bundle adjustment, and it can be observed that this
reconstruction is much closer to ground truth. After bundle ad-
justment, the model in Figure 6 has a mean reprojection error
of < 0.2 pixels. Figure 7 shows some views of the textured 3D
model obtained from the ‘Baity Hill’ sequence.

Figure 4: 2D feature tracks (in green) are shown superimposed
on example video frames.

Figure 5: Initial sparse reconstruction (top view) with estimated
focal length (before bundle adjustment) for the ‘Baity Hill’ video
sequence, showing triangulated 3D points along with the recov-
ered camera poses.

(a)

(b)

Figure 6: Two views of the sparse reconstruction of the ‘Baity
Hill’ sequence after bundle adjustment to optimize intrinsic cam-
era parameters as well as non-linear radial-distortion. Note from
the top-view in (a) that the reconstruction is much closer to
ground-truth as compared to that from Figure 5.

(a)

(b)

Figure 7: Final textured 3D model obtained from the ‘Baity Hill’
sequence.

In order to demonstrate loop-closing, we show results from the
‘South Building’ sequence, which consists of 1024x768 images
captured using a Point Grey Research Ladybug camera. Some
frames from the video are shown in Figure 8. Note that the first
and last images in Figure 8 represent frames at either end of the
video sequence, forming a loop around the building. The di-
mensions of the building are approximately 37x16 meters and
the camera’s path completes the loop by crossing at an angle of
approximately 90 degrees. Matching correspondences across this
wide angle using previous techniques for wide baseline match-
ing is difficult or even impossible. However, using VIP patches
we were able to complete the loop, generating an accurate 3D
point model of the building. Figure 9(a) shows the top view of
an initial sparse reconstruction of the ‘South Building’ sequence.
Due to the accumulated drift in the pose estimation process, the
obtained sparse reconstruction does not succeed in correctly re-
covering all facades of the building (note the area circled in the
figure). However, following the loop completion procedure de-
scribed previously, it can be seen that we obtain a much more
accurate reconstruction (refer Figure 9(b)).

5 CONCLUSIONS AND FUTURE WORK

This paper presents a system for 3D reconstruction of architec-
tural scenes from uncontrolled video sources. The reconstruc-
tions can be viewed from novel viewpoints or used to take rela-
tive measurements. Given an object of known scale in the scene
we can also give absolute measurements. Our system is capable
of generating models on the scale of single buildings. Our group
continues to work on methods to scale our algorithms to work an
much larger scenes. Currently, bundle adjusting very large scenes
forms the main bottle-neck. In fact, given a set of camera poses
we can calculate the scene geometry in real time. We are opti-
mistic that this bottle-neck will be reduced in the future.

Figure 8: Representative frames from the ‘South Building’ video
sequence.

(a)

(b)

Figure 9: Top view of the sparse reconstruction of the ‘South
Building’ sequence.

ACKNOWLEDGEMENTS

This work has been supported by NSF Career Award No. 0237533
and The David and Lucille Packard Foundation.

REFERENCES

Chum, O. and Matas, J., 2005. Matching with PROSAC - pro-
gressive sample consensus. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Davis, T. A., Gilbert, J. R., Larimore, S. and Ng, E., 2004. A
column approximate minimum degree ordering algorithm. ACM
Transactions on Mathematical Software 30(3), pp. 353–376.

Dellaert, F. and Kaess, M., 2006. Square root SAM: Simultane-
ous location and mapping via square root information smoothing.
International Journal of Robotics Research.

Engels, C., Stewénius, H. and Nistér, D., 2006. Bundle adjust-
ment rules. In: Photogrammetric Computer Vision (PCV).

Faugeras, O. D., Luong, Q.-T., and Maybank, S. J., 1992. Camera
self-calibration: Theory and experiments. In: European Confer-
ence on Computer Vision (ECCV).

Fraundorfer, F., Stewenius, H. and Nister, D., 2007. A binning
scheme for fast hard drive based image search. Computer Vision
and Pattern Recognition, IEEE Computer Society Conference on
0, pp. 1–6.

Fung, J., Mann, S. and Aimone, C., 2005. OpenVIDIA: Parallel
GPU computer vision. In: Proceedings of the ACM Multimedia
2005, pp. 849–852.

Haralick, R., Lee, C., Ottenberg, K. and Nollei, M., 1994. Re-
view and analysis of solutions of the three point perspective pose
estimation problem. Int. Journal of Computer Vision 13, pp. 331–
356.

Hill, R., Fung, J. and Mann, S., 2004. Reality window manager:
A user interface for mediated reality. In: Proceedings of the 2004
IEEE International Conference on Image Processing (ICIP2004),
pp. 24–27.

Kaess, M., Ranganathan, A. and Dellaert, F., 2008. iSAM: Incre-
mental smoothing and mapping. IEEE Transactions on Robotics.

Kim, S. J., Gallup, D., Frahm, J.-M., Akbarzadeh, A., Yang, Q.,
Yang, R., Nister, D. and Pollefeys, M., 2007. Gain adaptive real-
time stereo streaming. In: Proc. Int. Conf. on Computer Vision
Systems (ICVS).

Li, X., Wu, C., Zach, C., Lazebnik, S. and Frahm, J.-M., 2008.
Modeling and recognition of landmark image collections using
iconic scene graphs. In: European Conference on Computer Vi-
sion (ECCV).

Lourakis, M. and Argyros, A., 2004. The design and implemen-
tation of a generic sparse bundle adjustment software package
based on the Levenberg-Marquardt algorithm. Technical Report
340, Institute of Computer Science - FORTH.

Lowe, D. G., 1999. Object recognition from local scale-invariant
features. In: ICCV, pp. 1150–1157.

Lucas, B. and Kanade, T., 1981. An iterative image registration
technique with an application to stereo vision. In: International
Joint Conference on Artificial Intelligence (IJCAI), pp. 674–679.

Matas, J. and Chum, O., 2005. Randomized RANSAC with se-
quential probability ratio test. In: IEEE International Conference
on Computer Vision (ICCV).

Matas, J., Chum, O., Urban, M. and Pajdla, T., 2002. Robust
wide baseline stereo from maximally stable extremal regions. In:
British Machine Vision Conference, pp. 384–393.

Mendonca, P. R. S. and Cipolla, R., 1999. A simple technique for
self-calibration. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

Merrell, P., Akbarzadeh, A., Wang, L., Mordohai, P., Frahm, J.-
M., Yang, R., Nister, D. and Pollefeys, M., 2007. Fast visibility-
based fusion of depth maps. In: IEEE International Conference
on Computer Vision (ICCV).

Ni, K., Steedly, D. and Dellaert, F., 2007. Out-of-core bundle
adjustment for large-scale 3D reconstruction. In: IEEE Interna-
tional Conference on Computer Vision (ICCV).

Nister, D., 2003. Preemptive RANSAC for live structure and mo-
tion estimation. In: IEEE International Conference on Computer
Vision (ICCV).

Nister, D., 2004. An efficient solution to the five-point relative
pose problem. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (PAMI) 26, pp. 756777.

Nister, D. and Stewenius, H., 2006. Scalable recognition with a
vocabulary tree. In: In CVPR, pp. 2161–2168.

Pollefeys, M. and Gool, L. V., 1999. Stratified self-calibration
with the modulus constraint. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (PAMI) 21, pp. 707–724.

Pollefeys, M., Koch, R. and Gool, L. V., 1999. Self-calibration
and metric reconstruction in spite of varying and unknown in-
ternal camera parameters. Int. Journal of Computer Vision 32,
pp. 7–25.

Pollefeys, M., Nister, D., Frahm, J.-M., Akbarzadeh, A., Mordo-
hai, P., Clipp, B., Engels, C., Gallup, D., Kim, S.-J., Merrell, P.,
Salmi, C., Sinha, S., Talton, B., Wang, L., Yang, Q., Stewenius,
H., Yang, R., Welch, G. and Towles, H., 2008. Detailed real-time
urban 3d reconstruction from video. Int. Journal of Computer
Vision.

Raguram, R., Frahm, J.-M. and Pollefeys, M., 2008. A compar-
ative analysis of RANSAC techniques leading to adaptive real-
time random sample consensus. In: European Conference on
Computer Vision (ECCV).

Shi, J. and Tomasi, C., 1994. Good features to track. In:
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Snavely, N., Seitz, S. M. and Szeliski, R., 2008. Modeling the
world from internet photo collections. Int. Journal of Computer
Vision 80, pp. 189–210.

Triggs, B., 1997. Autocalibration and the absolute quadric. In:
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Wu, C., Clipp, B., Li, X., Frahm, J.-M. and Pollefeys, M., 2008.
3d model matching with viewpoint invariant patches (vips). In:
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Zach, C., Gallup, D. and Frahm, J., 2008. Fast gain-adaptive KLT
tracking on the GPU. In: CVPR Workshop on Visual Computer
Vision on GPU’s (CVGPU).

Ziegler, G., Tevs, A., Theobalt, C. and Seidel, H.-P., 2006. On-
the-fly point clouds through histogram pyramids. In: 11th Inter-
national Fall Workshop on Vision, Modeling and Visualization
2006 (VMV2006), pp. 137–144.

