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Abstract—The approach presented in this paper tackles the
active research problem of the fast automatic modeling of
large-scale environments from videos with millions of frames
and collection of tens of thousands of photographs downloaded
from the Internet. The approach leverages recent research in
robust estimation, image based recognition and stereo depth
estimation. The high computational speed is achieved through
parallelization and execution on commodity graphics hardware.
The approach achieves real-time reconstruction from video and
reconstructs within less than a day from tens of thousands
of downloaded images on a single commodity computer. We
demonstrate modeling results on a variety of real-world video
sequences and photo collections.

I. INTRODUCTION

Fully automatic modeling of large-scale environments has
been a long-standing research goal in photogrammetry and
computer vision. Detailed 3D models automatically acquired
from the real world have many uses including civil and mil-
itary planning, mapping, virtual tourism, games, and movies.
In this paper we present a system approaching fully automatic
modeling of large-scale environments, either from video or
from photo collections.

Recently, mapping systems like Microsoft Bing Maps have
started to use 3D models of cities. These systems achieve im-
pressive results for modeling large areas with regular updates,
but they still have many limitations. Namely, they require a
human in the loop for delivering models of reasonable quality;
the models have a very low complexity and do not provide
enough detail for ground-level viewing; availability of the
models is restricted to only a small number of cities across
the globe. By contrast, our scalable system can automatically
produce 3D models from ground-level images with a higher
level of detail at high speeds and low cost.

All key components of our modeling pipeline have been
optimized for efficiency by using the temporal relationships
of video frames or for photo-collections combining image
recognition and geometric constraints to establish spatial re-
lationships efficiently. The registered images/frames are then
registered into models with several thousands to millions of
frames and for videos dense scene models are obtained. Figure
1 shows examples of our state of the art models.

Fig. 1. The top shows an overview model of Chapel Hill reconstructed from
1.3 million video frames on a single PC in 11.5 hrs. On the bottom a model
of the statue of liberty is shown. The reconstruction algorithm registered 9025
cameras out of 47238 images downloaded from the Internet.

II. OVERVIEW

Our 30 Hz real-time 3D reconstruction from video can
operate from video alone or use the video streams of multiple
cameras mounted aided by additional sensors, such as differ-
ential GPS and an inertial sensor (INS), to reduce accumulated
error (drift) and provide geo-location. The system exploits the
temporal order of the video frames, which implies a spatial
relationship between adjacent frames, to efficiently perform
camera motion tracking and dense geometry computation.
Internet photo collections are not ordered and typically highly



contaminated. We determined for three datasets the degree
of contamination by labeling the dataset for the “Statue of
Liberty” (47238 images with approximately 40% outliers), the
dataset for “San Marco” (45322 images with approximately
60 % outliers) and for “Notre Dame” (11928 images with
approximately 49%). Our system uses appearance clustering
combined with multi-view geometry to obtain pairwise image
relationships. Besides modality specific adaptations the pro-
cessing pipelines for both types of input (video and photo col-
lections) share most of the same algorithmic components. The
design of the systems aims at efficient reconstruction through
parallelization of the algorithms, enabling their execution on
the graphics processor (GPU). The major computational blocks
of our system are:

• Local correspondence estimation establishes correspon-
dences for salient feature points to neighboring views.
In the case of video, feature correspondences are deter-
mined through KLT-tracking(Section IV-A1). For photo
collections, our system first finds neighboring views for
each image through clustering of global image descriptors
(Section IV-C1) and then uses SIFT features [1] for
detailed verification (Section IV-A).

• Camera pose/motion estimation from local correspon-
dences is robustly performed through ARRSAC, an effi-
cient RANSAC technique (Section IV-A2). It determines
the inlier correspondences and the camera positions with
respect to the previous images.

• Global correspondence estimation is performed to en-
able global drift correction. This step searches beyond the
temporal neighbors in video and beyond the neighbors in
the cluster for photo collections for images with overlap
to the current image (Section IV-B).

• Bundle adjustment uses the global correspondences to
reduce the accumulated drift of the camera registrations
from the local camera pose estimates.

• Dense geometry estimation is performed from video
streams in real-time to extract the depth of all pixels from
the camera (Section V). Our system uses a two-stage
estimation strategy. First we use efficient GPU-based
stereo to determine the depth map for every frame. Then
we use the temporal redundancy of the stereo estimations
to filter out erroneous depth estimates and fuse the correct
depth estimates.

• Model extraction is performed to extract a triangular
mesh representing the scene from the depth maps.

The next section will survey the relevant literature for
the above system components. Section IV-A will introduce
our algorithm for real-time 3D reconstruction from video.
Section IV-C will detail the adaptations that are necessary to
improve efficiency in reconstruction from unstructured photo
collections. Finally, Sections V and ?? will describe algorithms
for creating dense stereo reconstructions and polygonal models
from video streams.

III. RELATED WORK

In the last few years, there has been a considerable progress
in the area of large-scale reconstruction from video for urban
environments and aerial data, as well as from Internet photo
collections. Systems for urban reconstruction from video were
proposed in [2], [3], [4]. These systems partially relied on a
human in the loop or expensive capture equipment and, except
our previous work [4], did not achieve fast reconstruction. To
achieve fast processing and efficient visualization, Cornelis et
al. [5] proposed to model facades as ruled surfaces parallel to
the gravity vector.

One of the first works to demonstrate 3D reconstruction of
landmarks from Internet photo collections is the Photo Tourism
system [6]. This system achieves high-quality reconstruction
results with the help of computationally exhaustive pairwise
image matching combined with global bundle adjustment after
inserting each new view. This process is particularly ineffi-
cient for heavily contaminated collections. Aiming at lower
computational cost the system in [6], constructs skeletal sets
of images from the collection whose reconstruction provides
a good approximation to a reconstruction involving all the
images [7]. That work still needs to compute the expansive
pairwise matching. Using the independence of the pairwise
evaluation Agarwal et al. [8] address this computational chal-
lenge by using a computing cluster with up to 500 cores to
reduce the computation time significantly. The efficiency of
our system is made possible by a hierarchical reconstruction
approach starting from a set of canonical or iconic views [9],
[10] representing salient viewpoints and parts of the scene. By
contrast to previous systems, we view summarization as an
image organization step that precedes 3D reconstruction, and
we find iconic images using relatively simple 2D appearance-
based techniques.

After discussing the above modeling systems we now dis-
cuss prior work on the main system components described in
the previous section in more detail.

The first step in our systems is to establish local corre-
spondences between the video frames or the different images
of the photo collection respectively. Due to the large dynamic
range of outdoor video we use our extended KLT tracker [11],
which tracks the camera gain [12]. In the case of Internet
photo collections, we do not have a natural linear ordering
of images and have heavily contaminated collections. We
extract the subsets of images that observe common 3D scene
structure through 2D appearance descriptors inspired by [13],
[14] Then we employ SIFT matching [1] to establish the local
correspondences within each group of related images.

After establishing the local correspondences, we next deter-
mine the camera positions and orientations. As many other
systems we leverage the work in multiple view geometry
and typically alternates between robustly estimating camera
poses and 3D point locations directly [15], [16]. Often bundle
adjustment [17] is used in the process to refine the estimate.
In [18], a technique for out-of-core bundle-adjustment is
proposed, which takes advantage of this redundancy of photo



collections by locally optimizing the “hot spots” and then
connecting the local solutions into a global one.

Having registered all the cameras, we next compute a dense
3D representation of the scene. Given the dense stream of
viewpoints from video, we perform dense stereo. We refer the
reader to [19], [20] for surveys of binocular and multiple-view
stereo algorithms. Our system uses an extended version of
Yang and Pollefeys [21] approach. Many other approaches tar-
get urban environments using the fact that they predominantly
consist of planar surfaces [22], [23], or even more strict orthog-
onality constraints [24]. To ensure computational feasibility,
large-scale systems generate partial reconstructions, which are
afterwards merged into a common model. Conflicts and errors
in the partial reconstructions are identified and resolved during
the merging process [25]. Alternative, approaches like Koch
et al. [26] presented a volumetric problem formulation.

Finally, we should note that our work does not address the
temporal aspect of urban modeling, namely, the fact that cities
evolve over time. Introducing this aspect is a challenging long-
term research direction. One of the preliminary works to this
end is the 4D Atlanta project of Schindler et al. [27].

IV. CAMERA POSE ESTIMATION

In this section we discuss the methods used for camera
registration in our system. First, Section IV-A will discuss
camera registration methods for video sequences, which take
advantage of the known temporal relationships of the video
frames. Second, in Section IV-C we discuss the extension of
camera registration to unordered Internet photo collections.

A. Camera Pose from Video

Reconstructing the structure of a scene from images begins
with finding corresponding features between pairs of images.
In a video sequence we can take advantage of the temporal
ordering and small camera motion between frames to speed
up correspondence finding. This allows our system to treat
the local correspondence estimation as a tracking problem
(Section IV-A1). Then the local correspondences are used to
estimate the camera motion through our recently proposed ef-
ficient adaptive real-time random sampling consensus method
(ARRSAC) [28] (Section IV-A2). Alternatively, if GPS and
inertial measurements are available, the camera motion is
estimated through a Kalman filter, efficiently fusing visual
correspondences and the six degree-of-freedom (DOF) camera
poses as detailed in [4].

1) Local Correspondences: Our system uses the Kanade-
Lucas-Tomasi feature tracking [11] as differential tracking
method that first finds strong corner features in a video frame,
which are then tracked. To accommodate the large change in
intensity occuring between frames in outdoor scenes we use
our gain adaptive KLT tracker [12]. Specifically its GPU based
implementation [29].

2) Robust Pose Estimation: The estimated local correspon-
dences typically contain a significant portion of erroneous
correspondences. To determine the correct camera position
we apply our efficient adaptive Real-Time Random Sample

Consensus (ARRSAC) algorithm [28] to estimate the relative
camera motion through the essential matrix. While being
highly robust ARRSAC overcomes the significant computa-
tional expense of RANSAC, with a runtime exponential in
outlier ratio and model complexity. ARRSAC is capable of
providing accurate real-time estimation over a wide range
of inlier ratios. To achieve significant computational savings
and to meet a fixed time budget estimation ARRSAC moves
away from the traditional hypothesize-and-verify framework
of RANSAC to a parallel evaluation scheme. For the case of
epipolar geometry estimation, for instance, ARRSAC operates
with estimation speeds ranging between 55-350 Hz.

B. Global Correspondences

Since our system registers cameras sequentially, in the
absence of GPS the obtained registrations are always subject
to drift. Each small inaccuracy in motion estimation will
propagate forward and the absolute positions and motions
will be inaccurate. It is therefore necessary to do a global
optimization step afterwards using constraints that are capable
of removing drift.

Registering the camera with respect to the previously esti-
mated path provides an estimate of the accumulated drift error.
Our method determines the path intersection using the images
only by evaluating the similarity of SIFT-features [1] in the
current frame to all features in all previous views. We use our
SIFT-GPU implementation, which can extract SIFT features
at 12Hz from 1024 × 768 images on an NVidia GTX280.
Our method employs a vocabulary tree [30] combined with
scene summarization as introduced in [31] to avoid exhaustive
search. The obtained list of potentially overlapping views is
tested for valid two-view relationship to the search image.
This test uses a GPU based putative feature matching and the
ARRSAC framework achieving more than 10 Hz verification
rates as demonstrated in [31]. This allows us to establish a
registration with the previously seen scene part in an online
fashion.

Since the initial sparse model is subject to drift due to the
incremental nature of the estimation process, the reprojection
error of the global correspondences is typically higher than the
error of the local correspondences. In order to obtain results
with the highest possible accuracy, an additional refinement
procedure, generally referred to as bundle adjustment, is
necessary [17].

For video sequences, the bundle adjustment can be per-
formed incrementally, adjusting only the most recently com-
puted poses with respect to the existing already-adjusted
camera path. This allows bundle adjustment to run in real time,
although with slightly higher error than a full offline bundle
adjustment. This bundle adjustment technique is also used
extensively by our system for processing photo collections as
described below.

C. Camera Pose from Image Collections

The main difference from the case of video where the
temporal order of video frames implies a spatial relationship



between the corresponding cameras, photo collections down-
loaded from the Internet do not have any intrinsic ordering.
Moreover, these collections tend to be highly contaminated
with outliers. We use an efficient solution by taking advantage
of the redundancy inherent in Internet photo collections,
stemming the tendency of people to take pictures from very
similar viewpoints and with very similar compositions.

1) Efficiently Finding Corresponding Images in Photo Col-
lections: To efficiently identify related images in photo col-
lections, our system uses the gist feature [32], which encodes
the spatial layout of the image and perceptual properties of the
image. The gist feature was found to be effective for grouping
images by perceptual similarity and retrieving structurally sim-
ilar scenes [33]. To achieve high computational performance,
we developed a highly parallel gist feature extraction on the
GPU obtaining a 368-dimensional vector as a representation
of each image in the dataset. The implementation on the GPU
improves the computation time by a factor of 100 compared
to a CPU implementation (timings are given in Table I).

Given that photos from nearby viewpoints with similar
camera orientation have similar gist descriptors we use k-
means clustering to effectively cluster viewpoints. At this point
we aim for an over-segmentation since that will best reduce our
computational complexity in subsequent steps. This is key to
the overall efficiency of our system since this early grouping
allows us to limit all further geometric verifications and to
avoid an exhaustive search over the whole dataset as in [6].

The clusters loosely grouping the dataset, although it is
sensitive to image variation such as clutter (people in front of
the camera), lighting conditions, and camera zoom. We found
that large clusters are typically almost outlier-free (examples
shown in [34]), while the smaller clusters have significantly
more noise and contamination. Next we enforce multi-view
constraints to ensure that the images of each cluster observe
the same static scene.

2) Iconic Image Registration: To facilitate efficient reg-
istration, we want to find a representative image (iconic)
for each cluster of views. We can then remove unrelated
images by enforcing a valid two-view geometry with respect
to the iconic for each image in the cluster. Given the large
feature motion in photo collections, similarly to the global
correspondence computation in Section IV-B, we use SIFT
features [1], putative correspondence estimation on the GPU
and the ARRSAC from Section IV-A2 for two-view geometry
estimation to determine the local correspondences between the
images. To achieve robustness to degenerate data, we combine
ARRSAC with our robust model selection method, dubbed
QDEGSAC [35]. For more detail on this process we refer
to [34]. After this geometric verification, each cluster only
contains images showing the same scene, and each cluster is
visually represented by its iconic image.

3) Global Registration Using the Iconic Scene Graph:
After using the clusters to establish local image relationships
and to remove unrelated images, the next step is to establish
a global relationship of the images. For efficiency reasons,
we use the small number of iconic images to bootstrap the
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Liberty 0:25 h 3:08 h 3:21 h 13888 6:53 h
SM 0:23 h 3:42 h 2:47 h 12253 6:52 h
ND 0:0 3 h 1:19 h 1:02 h 3058 2:25 h

TABLE I
COMPUTATION TIMES FOR THE PHOTO COLLECTION RECONSTRUCTION

FOR THE STATUE OF LIBERTY DATASET, THE SAN MARCO DATASET (SM)
AND THE NOTRE DAME DATASET (ND).

global registration for all images. The exhaustive pairwise two-
view relationships for all iconics are computed again using
ARRSAC (Section IV-A2). This defines a graph of pairwise
global relationships between the different iconics, which is
called the iconic scene graph. The graph represents the global
registration of the iconics based on the 2D constraints given
by the epipolar geometry or the homography between the
views. Next, our system performs an incremental structure
from motion process using the iconic scene graph to obtain a
registration for the iconic images (see [34] for details). The
obtained 3D models for the independent components of the
iconic scene graph are refined by bundle adjustment [17].
Typically the iconic scene graph contains multiple independent
or weakly connected components. These components may
correspond to parts of the scene that have no visual connection
to the other parts, interior parts of the model, or other scenes
consistently mislabeled (for example, Ellis Island is often
labeled as “Statue of Liberty”, as shown in Figure 2). Hence
we repeat the 3D modeling until all images are registered or
none of the remaining images has any connections to any of
the 3D sub-models.

To obtain more complete 3D sub-models than is possible
through registering the iconics, our system searches for non-
iconic images that support a matching for the iconics in two
different clusters. Once a sufficient number of connections is
identified between two clusters, our method uses all constraints
provided by the matches to merge the two sub-models to which
the clusters belong. The merging estimates the similarity trans-
formation between the sub-models until no more additional
merges are possible.

After the registration of the iconic images, we have a
valid global registration for the images of the iconic scene
graph. In the last step we extend the registration to all images
in the clusters corresponding to the registered iconics using
ARRSAC (Section IV-A2) and the matches to the iconic
combined with periodic bundle adjustment. Results of our 3D
reconstruction algorithm are shown in Figure 2.

V. DENSE GEOMETRY

The above described methods for video and for photo
collections provide a registration for the camera poses, or
external and internal camera calibrations for every image



Fig. 2. Top: Model from the interior of “Ellis Island” erroneously labeled
as “Statue of Liberty”. Middle: 3D reconstruction of the San Marco Dataset
with 10338 cameras. Bottom: Reconstruction from the Notre Dame dataset
with 1300 registered cameras.

in the scene. The knowledge of camera parameters can be
used to generate an image-based browsing experience for
Internet photo collections, as shown by the “PhotoTourism”
paper [6]. Camera registration can also be used as input
to dense stereo methods. Dense stereo for Internet photo
collections is currently a very difficult research problem due to
the irregular distribution of camera viewpoints, wide variation
in lighting conditions, and the lack of photometric camera
calibration. One initial method is that of [36], and it requires
significant computational effort and can only be applied on
a small scale. We have not yet attempted efficient large-scale
estimation of dense geometry from Internet photo collections,
but we have developed a real-time large-scale stereo system
for video streams.

We adopt a stereo/fusion approach for dense geometry
reconstruction. For every frame of video, a depth map is gen-
erated using a real-time GPU-based multi-view plane-sweep
stereo algorithm [12]. Since it is a multi-view stereo, it robustly
handles occlusions, a major problem in two-view stereo. The
stereo depth maps are then fused using a visibility-based fusion
method, which also runs on the GPU [37]. Beyond removing

Fig. 3. Our depthmap fusion method combines multiple stereo depthmaps
(middle image shows an example depthmap) to produce a single fused
depthmap (shown on the right) with greater accuracy and less redundancy.

outliers from the depth maps, it also combines depth estimates
to enhance their accuracy. Given the redundancy in video (each
surface is imaged multiple times), fused depth maps only need
to be produced for a subset of the video frames. This reduces
processing time as well as the 3D model size.

Our plane-sweep stereo algorithm is an extension to dense
geometry of the algorithm of [38] and computes a depth
map by testing a family of plane hypotheses, and for each
pixel recording the distance to the plane with the best photo-
consistency score. One view is designated as reference, and
a depth map is computed for that view. For each plane,
all matching views are back-projected onto the plane, and
then projected into the reference view through homography
mapping [39]. It can be performed very efficiently on the GPU.
Once the matching views are warped, the sum of absolute
differences (SAD) is computed to score the photo-consistency.
To handle occlusions, the matching views are divided into a
left and right subset, and the best matching score of the subsets
is kept [40]. To normalize intensity differences in the image
due to different exposures the image intensities are multiplied
by the relative exposure (gain) computed during KLT tracking
(Section IV-A1). The stereo algorithm can produce a 512×384
depth map from 11 images (10 matching, 1 reference) and 48
plane hypotheses at a rate of 42 Hz on an Nvidia GTX 280.

After depth maps have been computed, a fused map is
computed for a reference view using the surrounding stereo
depth maps [37]. All points from the depth maps are projected
into the reference view, and for each pixel the point with
the highest stereo confidence is chosen. Pixel wise stereo
confidence is computed based on the shape of the cost function
for the pixel (details are given in [37]). This confidence
measure prefers depth estimates with low uncertainty, where
the matching score is much lower than scores for all other
planes.

For each pixel, after the most confident point is chosen, it
is scored according to visibility constraints. Supporting points
are those that fall within 5% of the chosen point’s depth value.
Valid points, are replaced with a new point computed as the
average of the chosen point and support points. See Figure 3.

Currently our dense geometry method is used only for
video. The temporal sequence of the video makes it easy
to select nearby views for stereo matching and depthmap
fusion. For photo collections, a view selection strategy would
be needed that identifies views with similar content and
compatible appearance (day, night, summer, winter, etc.). This
is left as future work.



The final step of our system extracts a triangular mesh
model and obtains the textures from the while removing
double surfaces in the final models. For details we refer to [4].

VI. CONCLUSIONS

In this paper we have presented methods for real-time
reconstruction from video and for fast reconstruction from
Internet photo collections on a single PC. We demonstrated
the computational performance of the methods on a vari-
ety of large-scale datasets. Efficiency was achieved through
parallelization of many computations involved, enabling an
execution on the graphics card as a highly parallel processor.
Additionally, for modeling from Internet photo collections
we combine constraints from recognition with geometric con-
straints, leading to an orders of magnitude more efficient image
registration than any existing system.
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