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ABSTRACT
RAHUL RAGURAM: E�cient Algorithms for Robust Estimation
(Under the direction of Jan-Michael Frahm and Marc Pollefeys)

One of the most commonly encountered tasks in computer vision is the estimation of model pa-

rameters from image measurements. This scenario arises in a variety of applications – for instance,

in the estimation of geometric entities, such as camera pose parameters, from feature matches be-

tween images. The main challenge in this task is to handle the problem of outliers – in other words,

data points that do not conform to the model being estimated. It is well known that if these out-

liers are not properly accounted for, even a single outlier in the data can result in arbitrarily bad

model estimates. Due to the widespread prevalence of problems of this nature, the field of robust

estimation has been well studied over the years, both in the statistics community as well as in com-

puter vision, leading to the development of popular algorithms like Random Sample Consensus

(RANSAC). While recent years have seen exciting advances in this area, a number of important

issues still remain open. In this dissertation, we aim to address some of these challenges.

The main goal of this dissertation is to advance the state of the art in robust estimation techniques

by developing algorithms capable of e�ciently and accurately delivering model parameter estimates

in the face of noise and outliers. To this end, the first contribution of this work is in the development

of a coherent framework for the analysis of RANSAC-based robust estimators, which consolidates

various improvements made over the years. In turn, this analysis leads naturally to the development

of new techniques that combine the strengths of existing methods, and yields high-performance

robust estimation algorithms, including for real-time applications.

A second contribution of this dissertation is the development of an algorithm that explicitly

characterizes the e↵ects of estimation uncertainty in RANSAC. This uncertainty arises from small-

scale measurement noise that a↵ects the data points, and consequently, impacts the accuracy of

model parameters. We show that knowledge of this measurement noise can be leveraged to develop

an inlier classification scheme that is dependent on the model uncertainty, as opposed to a fixed inlier
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threshold, as in RANSAC. This has the advantage that, given a model with associated uncertainty,

we can immediately identify a set of points that support this solution, which in turn leads to an

improvement in computational e�ciency.

Finally, we have also developed an approach to addresses the issue of the inlier threshold, which

is a user-supplied parameter that can vary depending on the estimation problem and the data being

processed. Our technique is based on the intuition that the residual errors for “good” models are in

some way consistent with each other, while “bad” models do not exhibit this consistency. In other

words, looking at the relationship between subsets of models can reveal useful information about

the validity of the models themselves. We show that it is possible to e�ciently identify this con-

sistent behaviour by exploiting residual ordering information coupled with simple non-parametric

statistical tests, which leads to an e↵ective algorithm for threshold-free robust estimation.
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Chapter 1

Introduction

Stated simply, one of the primary goals in computer vision is to extract useful information from

images. This information may take on various forms: geometric information, such as the 3-

dimensional structure of a scene and the location and orientation of the cameras that captured the

images; photometric information, such as the colour of objects and surfaces; and semantic informa-

tion, such as the identity of objects or events.

Indeed, the computer vision problem, as stated above, might appear simple at first glance, espe-

cially given the ease with which humans perform these same tasks. However, decades of research

have revealed the subtle di�culties inherent in designing automated systems that are capable of

emulating their human counterparts. Any computer vision system that aims to recover information

from images must deal with a number of challenges: variations in viewpoint, illumination and scale,

occlusions and clutter, and scene and camera motion, to name but a few. While these challenges

ensure that computer vision is an incredibly hard problem to solve in general, the problem is com-

pounded by the fact that the input to computer vision systems is itself typically unreliable. Each

pixel in an input image is subject to small-scale random deviations, or noise, caused by the processes

of sensing and digitization. In turn, this noise impacts any subsequent processing; for instance, any

low-level image features extracted from the input images are also subject to noise and imprecision.

One of the most fundamental tasks in computer vision is the estimation of model parameters

(e.g., geometric primitives such as lines or curves, motion models, camera pose parameters) from

image measurements (e.g., raw pixels, image corners, matched features between images). It is



typically the case that the number of image measurements is often orders of magnitude larger than

the number of parameters to be determined – for instance, a typical image today consists of millions

of pixels, and often hundreds or thousands of low-level image features. This volume of data implies

that model parameter estimation in computer vision is often an over-constrained problem, and can be

e�ciently solved using a standard technique like least-squares estimation (Strang, 1988). Moreover,

if it is assumed that the image measurements are corrupted by independent Gaussian noise, then the

least squares solution can be shown to be the maximum likelihood estimate (MLE) of the model

parameters (von Mises, 1964).

Unfortunately, the problem is not always this simple. In addition to small-scale random mea-

surement noise, we are often faced with data that does not conform to the model being estimated.

The points, called outliers, represent gross errors; for instance, specular highlights or saturated sen-

sor measurements in images, or errors introduced by the feature detection and matching algorithms.

These errors, which can be arbitrarily large, cannot be simply “averaged out” as in least squares.

Indeed, due to the non-robust quadratic error function in least squares, even a single outlier in the

data can result in arbitrarily bad model estimates. This fact was recognized very early on; indeed,

in the very first publication on least squares (Legendre, 1805):

If among these errors are some which appear too large to be admissible, then those obser-

vations which produced these errors will be rejected, as coming from too faulty experiments,

and the unknowns will be determined by means of the other observations, which will then give

much smaller errors.

As a consequence of this observation, much e↵ort has been directed towards the problem of

automatically identifying and compensating for outliers. The field of robust estimation has been

well studied over the years in the statistics community (Tukey, 1977; Huber, 1981; Siegel, 1982;

Rousseeuw, 1984). However, while the problem of outliers is a general one, arising in virtually

any domain where model parameters are estimated from real-world data measurements, it is also

arguably the case that this problem is of particular interest in computer vision and image analysis

applications, where noisy and erroneous image measurements are inevitable. It is perhaps due to

this reason that a rich variety of robust estimation algorithms have been developed in parallel in

the computer vision community (Hough, 1962; Fischler and Bolles, 1981; Illingworth and Kittler,
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1988). Today, virtually every computer vision system that aims to operate reliably on real-world

data has, at its core, some robust estimation algorithm that is capable of dealing with the problem

of outliers.

Figure 1.1 illustrates a sampling of such problems, where a variety of models are estimated

from di↵erent kinds of data measurements. Consider Figure 1.1(a), for example, which illustrates

the problem of estimating the relative pose between a pair of cameras that capture photographs of

the same scene. A typical way to estimate this relation is by first extracting low-level image features,

such as corners, in each of the images, which are then matched across the image pair to identify puta-

tive correspondences. Given this set of putative correspondences, standard techniques in multi-view

geometry (Hartley and Zisserman, 2000; Hartley, 1997a; Nistér, 2004) can then be used to estimate

the relative pose between the cameras that captured the images. While the procedure outlined above

would indeed yield acceptable results given a set of perfectly matched correspondences, the situa-

tion in practice is typically far more challenging: not only are the individual feature measurements

in each image subject to small-scale random variations (i.e., noise), there also exist mismatched

features (i.e., gross errors) within the set of putative correspondences. If these mismatches are not

properly accounted for, even a single mismatch in the set of putative correspondences can lead to

arbitrarily bad estimates of the relative pose.

Over the past four decades, a wide variety of robust estimation algorithms have been proposed,

both in the statistics and computer vision literature. These algorithms vary in the degree of robust-

ness that they provide to outliers, the assumptions they make about the data, their computational

complexity, and the level of generality, amongst other aspects. Of these many robust estimators,

perhaps the one that is used most widely, particularly in computer vision, is Random Sample Con-

sensus, or RANSAC (Fischler and Bolles, 1981), which forms the focus of the work in this disser-

tation.

The RANSAC algorithm is a remarkably simple, yet powerful, technique. In addition to its sim-

plicity, one compelling reason for its widespread adoption is the ability of the algorithm to tolerate

a tremendous level of contamination, providing reliable parameter estimates even when well over

half the data consists of outliers. However, while robust, the basic RANSAC algorithm has its draw-

backs: for instance, it can be computationally expensive as the level of data contamination and/or
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Figure 1.1: Some example problems in computer vision where models are estimated from noisy
and contaminated data measurements. (a) Estimating the relative motion between a pair of camera
views (Hartley and Zisserman, 2000) (b) Fitting ellipses to feature points extracted from the contours
of the eye (Li et al., 2006) (c) Estimating the alignment between photographs to form panoramic
images (Brown and Lowe, 2003) (d) Fitting planes to dense point clouds (Schnabel et al., 2007)
(e) Estimating multiple motion models from images (Raguram et al., 2012a) (f) Estimating the 3D
transformation that merges point clouds obtained via structure-from-motion (Raguram and Frahm,
2011).

the model complexity increase; it is susceptible to degenerate data configurations; and the model pa-

rameter estimates can be unstable and are typically not the globally optimal solution. Recent years
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have seen exciting advances in dealing with many of these problems (Chum et al., 2003; Nistér,

2003; Matas and Chum, 2002; Capel, 2005; Matas and Chum, 2005; Chum and Matas, 2005; Chum

et al., 2005; Frahm and Pollefeys, 2006; Ni et al., 2009; Sattler et al., 2009). However, a number of

important issues still remain open. In this dissertation, we aim to address some of these challenges.

The goal of this dissertation is to advance the state of the art in robust estimation techniques by

developing algorithms capable of e�ciently and accurately delivering model parameter estimates

in the face of noise and outliers. The algorithms developed in this thesis aim to improve upon

the robustness, flexibility and e�ciency of current techniques. In turn, we hope that these algo-

rithmic improvements will help drive forward the state of the art in computer vision. Indeed, as

the computer vision and robotics communities push towards more challenging problems on massive

real-world datasets (Tanaka and Kondo, 2006; Snavely et al., 2008; Agarwal et al., 2009; Torii et al.,

2009; Frahm et al., 2010) and seek real-time performance (Nister et al., 2004; Malis and Marchand,

2006; Pollefeys et al., 2008; Clipp et al., 2010), it becomes increasingly more important to develop

algorithms that can handle the many challenges that are associated with this progression.

One of the motivating applications for the algorithms developed in this dissertation is that of

large-scale structure from motion. Recent years have seen an explosion in consumer digital pho-

tography and a phenomenal growth of community photo-sharing websites. More than a billion

photos are uploaded to the web every day, and this number shows no signs of slowing down. In

addition, more and more of the Earths cities and sights are photographed each day from a variety

of viewing positions and angles, illumination conditions, and imaging devices (see, for instance,

Google Street View1 and Microsoft Bing StreetSide2). In turn, this has created a high demand for

computer vision techniques that can provide intuitive and compelling visual representations of land-

marks and geographic locations. This problem of estimating 3D structure from a video sequence

or an unordered collection of images has received renewed attention in recent years (Scha↵alitzky

and Zisserman, 2002; Nister et al., 2004; Pollefeys et al., 2008; Snavely et al., 2008; Agarwal et al.,

2009; Torii et al., 2009; Frahm et al., 2010). Estimating 3D structure and camera pose information

from images requires the extraction of salient feature correspondences across images, followed by

1http://www.google.com/streetview

2http://www.microsoft.com/maps/streetside.aspx
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Sparse 3D models 

Millions of video frames 

Figure 1.2: 3D reconstruction from video (see, for e.g., (Pollefeys et al., 2008)). In this dissertation,
we propose a real-time algorithm that performs robust camera pose estimation at 100+ frames per
second.

the robust estimation of geometric constraints that link the di↵erent views. It is worth noting that

this process must be performed literally millions of times in any large-scale reconstruction system.

Thus, it is essential that this module be capable of both e�cient as well as robust operation; failing

this, processing these large-scale datasets is simply an impossible task. The algorithms developed in

this dissertation have been deployed in real-world systems that handle massive large-scale datasets,

achieving real-time performance (Figure 1.2), and enabling the processing of orders of magnitude

more data than the state of the art (Figure 1.3).
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Millions of images from the internet 

yo

Sparse 3D models 

Figure 1.3: 3D reconstruction from internet image collections containing millions of images (Frahm
et al., 2010). In this dissertation, we propose a high-performance robust estimator that is capable of
performing geometric verification at 450+ image pairs per second, threaded across 8 CPU cores.

1.1 Thesis Statement

Given noisy and highly contaminated data measurements, it is possible to e�ciently and accurately

recover model parameter estimates, thus enabling real-time and large-scale applications. When the

scale of noise is known, it is possible to compensate explicitly for this, yielding improved perfor-

mance. In addition, in the absence of noise scale, it is still possible to perform e�cient robust

estimation by looking for model consistency.
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1.2 Contributions

This dissertation makes the following contributions to robust estimation:

A Comparative Analysis of RANSAC Techniques (Chapter 3). We present a coherent framework

for RANSAC-based robust estimation techniques, which consolidates and analyses the various im-

provements made over the years. In particular,

• We provide a common context for the analysis of RANSAC algorithms by introducing a new

framework for robust estimation, which we call Universal RANSAC (USAC). USAC extends

the simple hypothesize-and-verify structure of standard RANSAC to incorporate a number

of important practical and computational considerations. This framework also provides the

basis for a new high performance robust estimator that addresses many of the limitations of

RANSAC within a single unified system (Raguram et al., 2012a).

• To address the issue of real-time applications, we propose a real-time reformulation of RANSAC,

termed Adaptive Real-Time Random Sample Consensus (ARRSAC), which achieves high

performance by integrating various ideas proposed in the literature (Raguram et al., 2008).

• We discuss the application of these two algorithms in large-scale 3D reconstruction systems.

In particular, we investigate the use of an alternate form of prior information to bias sampling,

with a focus on internet photo collections.As opposed to ordering feature matches based on

image-to-image match scores, we build match statistics on visual words, and use this to guide

the sampling. In practice, this leads to an improvement in e�ciency (Raguram et al., 2012b).

Exploiting Uncertainty in Random Sample Consensus (Chapter 4). We show how to model

and characterize the e↵ects of noise and uncertainty in RANSAC, and design an algorithm that can

e�ciently leverage this information (Raguram et al., 2009).

• Assuming knowledge of the scale of inlier noise, we discuss how to explicitly characterize

the uncertainty of the models hypothesized in the estimation procedure, in terms of their

covariance.
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• We then show that this covariance can be leveraged to develop an inlier classification scheme

that is dependent on the model uncertainty, as opposed to a fixed threshold. In other words,

given a model with associated uncertainty, we can immediately identify a set of points that

support this solution, if the imperfect model estimation were taken into account. We show

how this can be integrated into a robust estimation algorithm (cov-RANSAC) in order to

achieve a reduction in the number of samples required.

Threshold-free Robust Estimation via Residual Consensus (Chapter 5). Finally, we address

the issue of the inlier threshold, which is a user-supplied parameter that can vary depending on

the estimation problem and the data being processed, and propose a new framework for robust

estimation that can operate in the absence of this parameter (Raguram and Frahm, 2011).

• We make use of the simple observation that a pair of “good” models is somehow consistent

in the behaviour of their residuals, and that a pair of “bad” models does not exhibit this

consistency. We then develop an algorithm that identifies consistent pairs of models, without

resorting to the use of an inlier threshold.

• By using residual sorting information, coupled with non-parametric statistical hypothesis

tests, we develop a simple algorithm, termed Residual Consensus (RECON), that is capable

of threshold-free operation, while still being e�cient enough to be employed for real-world

robust estimation problems.

1.3 Organization

The remainder of the dissertation is organized as follows. Chapter 2 introduces the robust estimation

problem and presents the RANSAC algorithm in its standard form. Other relevant robust estimation

algorithms are also discussed, with a focus on those that have found application in computer vision

systems.

Chapter 3 presents a comparative analysis of RANSAC techniques, and surveys the state of the

art algorithms in this area. The Universal RANSAC framework is introduced as a basis for this com-

parative analysis, and its performance is benchmarked relative to other RANSAC approaches. We
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then extend this analysis to design a real-time RANSAC algorithm that combines various optimiza-

tions in order to achieve high performance. Finally, we also present a new scheme for weighting

feature matches, based on visual word statistics, and show that this can improve the e�ciency of

USAC as applied to geometric verification in large scale photo collections.

Chapter 4 discusses the e↵ect of measurement noise on the model parameters, as well as its

e↵ect on RANSAC. We then present an approach that quantifies this e↵ect, and show how it can be

leveraged to improve performance.

Chapter 5 introduces a new framework for threshold-free robust estimation, that looks at consis-

tency between pairs of models, without requiring data or model specific threshold parameters to be

provided by the user. A simple measure of consistency is proposed, and we describe an algorithm

that uses this measure to achieve threshold-free robust estimation.

Finally, Chapter 6 concludes with a summary and discussion of ideas for future work.
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Chapter 2

Background and Related Work

2.1 Problem Definition

We begin by defining the notion of robustness that we will use in this dissertation. One may argue

that since one goal of computer vision is to emulate human visual perception, that the robustness

of a computer vision algorithm should be evaluated against the performance of a human observer,

performing a similar task. However, this is not always an appropriate benchmark, due to a number

of reasons. Most notably, the notion of robustness in human vision works well for higher-level tasks

and abstract concepts (e.g., “is this an picture of a chair?”). However, when presented with lower-

level computational tasks (e.g., “what is the relative camera motion between this pair of images”),

the human visual system is much less precise. Thus, we will not consider higher level processes

when evaluating the robustness of the algorithms in this dissertation. Rather, we will use a definition

of robustness that is drawn from the statistical literature (Huber, 1981):

The word “robust” is loaded with many – sometimes inconsistent – connotations. We use

it in a relatively narrow sense: for our purposes, robustness signifies insensitivity to small

deviations from the assumptions.

More specifically, we will define the robustness of an algorithm in terms of its ability to tolerate

data contamination in the form of outliers, which represent deviations from model assumptions.

That is, a robust estimator is one that is capable of providing reliable estimates of model parameters



even when some (possibly significantly large) fraction of the data is contaminated by points that

do not conform to the model being estimated. Note that while the focus of this dissertation is

on applications of robust estimation in computer vision, this definition of the robust estimation

problem is much more general, and many of the algorithms presented here are suitable for use in

other application areas as well.

Given a set of measurementsU containing N data points u1, ...,uN , assume that a subset of size I

points is consistent with some underlying model of interest. These points, or inliers, may be subject

to small-scale random variations, or noise, which arise from imperfections in the measurement

process. The remaining N � I data points may be thought of as gross errors that do not conform to

the model of interest, and are termed outliers. Let ✓ be a p-dimensional parameter vector that is to

be estimated from the set of data measurements. The goal of the estimation procedure is to compute

the model parameters corresponding to the inlier population.

Traditional maximum likelihood estimation (MLE) techniques such as least squares produce

unpredictable results when given data that contains both inlier and outlier populations. Since then,

much work in robust statistics and computer vision, has been targeted at automatically separating

these two distinct populations in the data – inliers and outliers – prior to or during the parameter esti-

mation process. In the remainder of this section, we will discuss some of the prominent approaches

that have been proposed over the years.

2.2 Random Sample Consensus

The RANSAC algorithm was originally proposed in (Fischler and Bolles, 1981) as a general frame-

work for model fitting in the presence of outliers. Below, we present a description of the algorithm

in its most basic form.

The goal of the standard RANSAC algorithm is to e�ciently explore the space of model param-

eters in order to maximize some objective function C. RANSAC performs this maximization in a

randomized, data-driven manner. Points in the parameter space are defined by repeatedly selecting

random subsets of the data points, and generating model hypotheses from the points in each subset.

Each hypothesized model is then scored using the remaining data points and the hypothesis that

obtains the best score is returned as the solution.
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2.2.1 Objective function

In the standard RANSAC formulation, the objective function C to be maximized is the size of the

support for a given model. More specifically, given a model with parameters ✓, the support is the

number of data points from U that have residual errors smaller than some predefined threshold t.

We assume that an an error (or residual) function r(ui,✓) is provided, along with the value of the

threshold t. Defining ei = r(ui,✓), an inlier is defined as a point with e2
i < t2, and the set of such

points is called the consensus set. RANSAC attempts to maximize the cardinality of this set. In

other words, the objective function in RANSAC can be written as

C =
X

i

⇢(e2
i ) (2.1)

where the cost function ⇢(.) is defined as

⇢(e2
i ) =

8>>>>>><
>>>>>>:

1 for e2
i  t2 ,

0 for e2
i > t2 .

(2.2)

2.2.2 Subset size

In order to maximize the objective function C, RANSAC operates in a hypothesize-and-verify loop,

repeatedly sampling subsets of the data to hypothesize model parameters, and then verifying the

support of the models against all data points. Each subset is a minimal sample - in other words, the

size m of each subset is defined by the minimum number of points required to uniquely compute the

model parameters. This marks a departure from traditional regression techniques, which typically

use all the available data to estimate model parameters; in contrast, RANSAC uses as little data as

possible. This reason is motivated by the fact that the goal in RANSAC is to draw an uncontaminated

(or all-inlier) sample from which the correct model parameters can be computed. Such a model

should then, in principle, be supported by a majority of the other inliers, and thus provides us with

the solution.

In this context, define pk
success as representing the probability of drawing an uncontaminated
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subset of size k � m. We then have

pk
success =

⇣
I
k

⌘

⇣
N
k

⌘ =
k�1Y

i=0

I � i
N � i

(2.3)

It can be seen that this probability of drawing an uncontaminated sample is maximized when k = m.

Consequently, the size of the sample is chosen to be as small as is feasible.

2.2.3 Stopping criterion

Since the total number of elemental subsets,
⇣

N
m

⌘
, can be very large, it is computationally infeasible

to exhaustively sample the space of model parameters. We now address the issue of how many

samples need to be drawn before the algorithm can terminate. It can be shown (Fischler and Bolles,

1981), that in order to ensure with some confidence ⌘0 that at least one outlier-free set of m points

is sampled, we must draw at least k samples, such that

k � log(1 � ⌘0)
log(1 � "m)

, (2.4)

where " = I/N is the fraction of inliers in the dataset. The value of ⌘0 is typically set to 0.95 or 0.99.

In practice, since " is typically unknown a priori, it is possible to use a worst-case estimate

of " to compute the number of RANSAC trials. However, it is much more e�cient to use an

adaptive stopping criterion where " is initialized with the worst-case assumption, and is updated

as the sampling progresses, based on the size of the maximum consensus set found so far. In this

context, Equation (2.4) may be viewed as the number of samples after which the likelihood of

finding a better model (i.e., one with better support than the largest consensus set found so far) falls

below a 1 � ⌘0 threshold (Torr et al., 1998).

An additional useful way of thinking about the number of trials in RANSAC is the following:

each sample drawn in RANSAC is either uncontaminated (a “success”) or contaminated (a “fail-

ure”). The number of uncontaminated samples drawn thus follows a binomial distribution with

probability of success p = 1/"m (the probability of drawing m inlier points). For su�ciently small

values of p, this can be approximated by a Poisson distribution. In other words, the probability of

14



exactly n successes in k trials can be expressed as

p(n, �) =
�ne��

n!
, (2.5)

where � is the expected number of successes in k trials. In RANSAC, we want to ensure with some

confidence that the probability of having no successes falls below some threshold. Thus, we have

p(0, �) = e�� < 1 � ⌘0 (2.6)

For ⌘0 = 0.95, it can be seen that on average, we expect approximately � = 3 uncontaminated

samples to be drawn before the 95% confidence in the solution is reached.

Some final observations about the stopping criterion are pertinent at this stage. Firstly, note

from Equation (2.4) that the number of iterations does not depend on the number of inliers, but

rather upon their proportion in the data. Secondly, note that it is this process of repeated sampling

that gives the algorithm robustness to large levels of data contamination. As the inlier ratio reduces,

it can be seen from equation (2.4) that the number of iterations required by RANSAC increases

– however, given enough time, the algorithm will eventually find an uncontaminated sample that

gathers su�cient support, and return this as the solution. Finally, one of the implicit assumptions

made in the derivation of Equation 2.4 is that any minimal subset that contains only inliers leads to

high support, and is su�cient to provide an accurate estimate of the model parameters. However,

since we are relying on minimal subsets, the influence of noise is the largest possible. In practice,

this can often lead to reduced accuracy, as well as an increase in the observed number of RANSAC

iterations compared to the theoretically expected number.

2.2.4 Threshold selection

The most important input parameter required by RANSAC is the threshold t, which determines

whether a data point supports a particular model or not. While precise knowledge of this threshold

is typically unavailable, it is often possible to make a reasonable empirical choice. For instance, it

is often the case when estimating multi-view geometric constraints that the acceptable reprojection

error is on the order of a pixel. Furthermore, it is also possible to generalize this process of threshold
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Algorithm 1 Standard RANSAC algorithm
Input: U, ⌘0, kmax, t
Output: ✓⇤, I⇤
k = 0, Imax = 0
while k < kmax do

1. Hypothesis generation
Randomly sample minimal subset of m points
Estimate model parameters ✓k
2. Verification
Calculate the support set Ik
if |Ik| > Imax then
✓⇤ = ✓k, I⇤ = Ik
Recompute kmax from eqn. (2.4) using " = |I⇤|/N

end if
k = k + 1

end while

selection by making some assumptions about the nature of the noise a↵ecting the data points. In

particular, it is common to assume that the data points are perturbed by Gaussian noise with zero

mean and standard deviation �. In this context, the point-model error e2 can be expressed as a sum

of n squared Gaussian variables, where n is the codimension of the model (for e.g., n = 1 when

measuring the distance of a point from a line, while n = 2 for point to point distance in 2D). The

residuals thus follow a chi-square distribution with n degrees of freedom, and the inverse chi-square

distribution can be used to determine a threshold t that captures a fraction ↵ of the true inliers

(Hartley and Zisserman, 2000):

t2 = ��1
n (↵)�2 (2.7)

where � is the cumulative chi-square distribution,, and ↵ is the fraction of inliers, typically set to

0.95. Thus, when using the threshold computed with ↵ = 0.95, a true inlier will be incorrectly

rejected only 5% of the time.

The RANSAC algorithm, after incorporating the adaptive stopping criterion, is outlined in Al-

gorithm 1. This is the typical form in which RANSAC is used in practice.
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2.2.5 RANSAC improvements

The standard RANSAC algorithm is invariably the robust estimator of choice for computer vision

applications, partly due to its simplicity (note the simple, two step hypothesize and verify structure

in Algorithm 1), but also its ability to tolerate large levels of data contamination, providing reliable

parameter estimates even when well over half the data consists of outliers. However, while popu-

lar, the standard algorithm does have its weaknesses. In brief, RANSAC can be computationally

expensive when presented with more challenging data (e.g., low inlier ratios); it is susceptible to

degenerate data configurations; and the model parameter estimates can be unstable and are typically

not the globally optimal solution. Consequently, recent years have seen exciting advances in dealing

with each of these problems. We now briefly touch upon some of these advances, noting that a more

in-depth discussion of these algorithms will be deferred until Section 3.2.

One strategy to improve RANSAC is based on the observation that while RANSAC generates

model hypotheses by sampling minimal subsets at uniformly at random from the data, it may some-

times be possible to incorporate prior information and bias the sampling with a view towards pref-

erentially generating models that are more likely to be correct. The idea of non-uniform sampling

based on prior information can have a dramatic impact on the e�ciency of RANSAC, particularly

for low inlier ratios. Indeed, this simple observation has been explored in a number of ways in

the RANSAC literature (Myatt et al., 2002; Tordo↵ and Murray, 2002; Chum and Matas, 2005; Ni

et al., 2009), and depending on the data and/or problem at hand, can provide orders of magnitude

improvement in the number of samples required to find a solution.

While the number of samples drawn by RANSAC depends on the inlier ratio and the model

complexity, an additional computational factor is the total number of correspondences N, since a

hypothesized model is verified against every data point. A number of e↵orts in recent years have

focused on making the verification stage of RANSAC more e�cient (Matas and Chum, 2002; Capel,

2005; Matas and Chum, 2005; Chum and Matas, 2008). The main idea in these approaches is to

conduct a statistical test on a small number of data points, and then either discard the model, or

accept it and compute its full support as in the standard case. By terminating the evaluation of bad

models early on, these techniques provide up to an order of magnitude improvement in runtime

compared to RANSAC.
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In addition to these improvements in e�ciency, other approaches have focused on the question

of accuracy. In (Chum et al., 2003), an approach is proposed that integrates local refinement of the

model parameters into the RANSAC algorithm, improving both the accuracy of the final solution,

as well as the computational e�ciency of the overall algorithm. The e↵ect of degenerate data con-

figurations on the accuracy of RANSAC is addressed in (Chum et al., 2005; Frahm and Pollefeys,

2006), which propose techniques for detecting and recovering from degeneracy.

All the broad strategies mentioned above focus on optimizing or improving various modules of

the standard RANSAC algorithm. In addition to these advances, there have been other approaches

that aim to more fundamentally reformulate the algorithm in various ways. For instance, (Nistér,

2003) presents a real-time implementation called preemptive RANSAC, which switches from a

depth-first approach, as in standard RANSAC, to a breadth-first approach, which is more amenable

to time-bounded settings. While this enables real-time operation, the algorithm can no longer pro-

vide an ⌘0-level guarantee that the correct solution has been found. Consensus Set Maximization

(Li, 2009) reformulates RANSAC as a mixed integer programming problem, and solves it using a

modified branch and bound algorithm. An interesting consequence of this formulation is that it pro-

vides an optimal solution to the robust estimation problem, unlike the randomized results provided

by RANSAC. However, this comes at a significantly higher computational cost, and the algorithm is

as yet impractical for real-world applications. Finally, the StaRSaC algorithm (Choi and Medioni,

2009) reformulates RANSAC to relax the requirement of a fixed threshold, by exhaustively test-

ing all choices in some range. For each threshold, RANSAC is executed repeatedly, and threshold

is chosen that shows minimum “variance of parameters”. While this approach does not require a

user-specified threshold, it can also be relatively ine�cient, depending on the number of thresholds

tested and the number of RANSAC repetitions per threshold.

2.3 Other robust estimators

While the focus of this dissertation is primarily on RANSAC and its variants, it is worth noting

that a rich variety of other robust estimation algorithms have been proposed over the years. We

now present a brief discussion of some other important robust estimation algorithms which aim

to optimize di↵erent cost functions, as compared to RANSAC. A more in-depth survey of these
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methods may be found in (Rousseeuw and Leroy, 1987; Meer, 2004; Maronna et al., 2006).

2.3.1 M-estimators

M-estimators (Huber, 1964) are generalizations of Maximum Likelihood Estimators that seek to

minimize objective functions of the form

C =
X

i

⇢(ei) (2.8)

where ⇢ is a robust function of the error residuals ei, and whose growth as a function of |ei| is

subquadratic (in contrast to non-robust techniques such as least squares, which use a quadratic

function of the error residuals). The motivation behind M-estimators is to down-weight the penalty

for large residuals, and thereby reducing the e↵ect of outliers. The obective function in Equation

2.8 can be solved by finding ✓ such that

X

i

 (ei)
�ei

�✓
= 0, (2.9)

where  (ei) = d⇢(x)/dx is referred to as the influence function. It is common (Holland and Welsch,

1977; Huber, 1981) to then introduce a weight function w(x) =  (x)/x, so that Equation 2.9 becomes

X

i

w(ei)ei
�ei

�✓
= 0. (2.10)

This leads to an iteratively reweighted least squares (IRLS) procedure, involving computing the

weights w(ei) using the current estimate of the parameter vector ✓, and then solving Equation 2.10

to estimate a new ✓, holding the weighs fixed.

The many M-estimators that have been proposed di↵er primarily in the shape of the cost func-

tion ⇢, which in turn leads to di↵erent statistical properties (Beaton and Tukey, 1974; Holland and

Welsch, 1977; Huber, 1981). However, while the use of modified cost functions improves robust-

ness, it should be noted that in order to perform well in practice, and in particular to avoid local

minima in the IRLS procedure, M-estimators typically require a good initial estimate of the model

parameters. This is often obtained either by non-robust least squares or by the use of other robust
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estimators, such as RANSAC.

2.3.2 Least Median of Squares

The Least Median of Squares technique (Rousseeuw, 1984) takes a di↵erent approach to the regres-

sion problem. Instead of minimizing the sum of the squared error residuals as in least squares (or

a robust function of the residuals as in the case of M-estimators), this technique seeks to find the

parameters that minimize the median of the squared residuals. Thus, the cost function in LMedS

can be written as

C = mediani(e2
i ) (2.11)

The implication of this choice is that now, up to half the points can be arbitrarily far away from

the optimum model without changing the value of the objective function. Since the median is not

di↵erentiable, this cost function is typically minimized by adopting a random sampling strategy

as in RANSAC (in fact, RANSAC predates LMedS by three years). While the LMedS algorithm

does not require knowledge of the scale of the noise, note, however, that the method breaks down

when more than half the data is contaminated by outliers. On the other hand, if the outlier fraction

is known beforehand, the algorithm can be easily modified to replace the median with a di↵erent

order statistic, thereby modifying the tolerance of the algorithm to a di↵erent outlier percentage.

2.3.3 M-estimator Sample Consensus (MSAC)

There have been attempts to more directly combine the advantages of M-estimator techniques with

standard RANSAC. In particular, it can be observed that the process of maximizing the size of the

consensus set in RANSAC is equivalent to minimizing an objective function of the form in equation

(2.1), but where ⇢(.) is now defined as

⇢(e2
i ) =

8>>>>>><
>>>>>>:

0 for e2
i  t2 ,

1 for e2
i > t2 .

(2.12)

This cost function implies that inlying data points have no penalty, and outliers are given a constant

penalty of one. Inspired by M-estimators, (Torr and Zisserman, 1998) proposed an alternate cost
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function of the form

⇢(e2
i ) =

8>>>>>><
>>>>>>:

e2
i for e2

i  t2 ,

t2 for e2
i > t2 .

(2.13)

where outliers are still scored with a fixed penalty, but inliers are now scored based on how well

they fit the model. The resulting estimator was called MSAC, or M-estimator Sample Consensus. It

was shown that for the problem of epipolar geometry estimation, MSAC provides solutions that are

5-10% more accurate than standard RANSAC (Torr and Zisserman, 2000).

2.3.4 Maximum Likelihood Estimation Sample Consensus (MLESAC)

The MSAC idea was extended a step further in the Maximum Likelihood Estimation Sample Con-

sensus (MLESAC) algorithm (Torr and Zisserman, 2000) where a new objective function, the like-

lihood of the model, is maximized.

C =
X

i

log p(ei|✓) (2.14)

where p(ei|✓) characterizes the behaviour of data point residuals. To account for both noise and

outliers, the error distribution for data points is represented as a mixture model of Gaussian and

uniform distributions. For inliers, the residuals ei are assumed be Gaussian N(0,�) with a known

standard deviation, while for outliers, the distribution of residuals is assumed to be uniform (0, v).

In other words,

p(ei|✓) = "
� 1p

2⇡�2
e�
�e2

i
2�2

�
+ (1 � ")

1
v

(2.15)

where ✓ are the model parameters, � is the (assumed known) standard deviation of the measurement

noise, v is a constant (for instance, when extracting feature matches between images, this could be

the diameter of the search window) and " is the (unknown) inlier ratio, which in this case plays the

role of the mixing parameter.

Like MSAC, MLESAC o↵ers a 5-10% improvement in model accuracy over basic RANSAC,

but at the expense of additional computational cost. In practice, the main benefits o↵ered by MSAC

and MLESAC over RANSAC are observed in cases where the likelihood function over model pa-
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rameters is relatively flat, implying that there are several competing models near the vicinity of

the global minimum. In such scenarios, using robust cost functions can better distinguish between

multiple models that may produce identical inlier scores. On the other hand, in cases where the

likelihood function has a strong peak implying the existence of a dominant model in the data, the

e↵ect of the di↵erent cost functions is minimal. In particular, as noted in Sec. 2.2.3, on average,

only three uncontaminated samples are drawn before the standard termination criterion in RANSAC

(as well as MSAC/MLESAC) is met (Equation 2.6). Accordingly, when there is a dominant model

in the data, the cost functions in both RANSAC and MSAC/MLESAC are likely to pick the same

model from this set.

2.4 Summary

In summary, it is evident from the discussion in this section that the field of robust estimation is a

very active one, with a variety of challenges and open problems. In this context, our focus in this

dissertation is on a category of popular algorithms – RANSAC-based robust estimators. It is worth

noting that, despite their existing limitations, RANSAC-based algorithms are arguably the most

widely used robust estimators in computer vision today, and form a crucial cog in many real-world

vision systems. It thus becomes important to study and improve upon these algorithms, in order to

help drive forward the state of the art in computer vision. In the remainder of this dissertation we

present various algorithms that aim to achieve this goal.
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Chapter 3

A Comparative Analysis of RANSAC
Techniques

3.1 Overview

Over the past decade, a number of improvements to RANSAC have been proposed, each address-

ing a specific weakness of the original algorithm. However, while recent work has focused on

addressing issues with RANSAC, relatively less attention has been paid to a unified review of these

developments. One e↵ort in this direction is that of (Chum and Matas, 2008), which analyses the

performance of a few recent RANSAC variants on a selection of geometric estimation problems.

In addition, while there exist a few surveys that focus on statistical robust estimators (for instance,

Meer, 2004), the coverage of algorithms in these surveys is limited, and does not include many

recent RANSAC-based techniques that are in widespread use, particularly in computer vision appli-

cations. From an evaluation perspective, to the best of our knowledge, there are no publicly available

“reference” implementations, or benchmark datasets, for the evaluation of newly developed robust

estimation algorithms. One of the goals of this dissertation is to fill this gap, by providing a common

context within which to study these disparate techniques. In turn, this analysis will lead naturally to

the development of new algorithms that combine the strengths of existing methods. In a sense, this

step will consolidate years of research in RANSAC-based robust estimation techniques, to develop

new frameworks for high-performance robust estimation. We now describe two frameworks that



result from this analysis.

3.2 A Universal Framework for Random Sample Consensus (USAC)

In Algorithm 1, we summarized the operation of RANSAC in the form in which it is often applied.

However, note that there are some important limitations of the technique when used in this form.

1. E�ciency: From Section 2.2, note that time complexity in RANSAC depends on the subset

size m, the inlier ratio ", and the number of data points N. Thus, for more challenging prob-

lems (e.g., higher model complexity, more contaminated data, more data points) the compu-

tational cost of RANSAC can be prohibitively high. In addition, note that there is an implicit

assumption in equation (2.4), that a model generated from an all-inlier sample will result in

all inliers being found. In practice, this is seldom the case, since the use of minimal samples

implies that the model hypotheses themselves are “noisy”. Consequently, the number of iter-

ations required by RANSAC is typically more than that predicted by equation (2.4) (Tordo↵

and Murray, 2002; Chum et al., 2003).

2. Accuracy: As noted in Section 2.2.2, the reliance of RANSAC on minimal samples is pri-

marily due to e�ciency considerations. However, model parameters that are computed from

minimal subsets may be a↵ected significantly by noise in the minimal sample. It is thus worth

stressing that the model parameters returned by standard RANSAC can often be sub-optimal

and must be refined prior to being used for additional tasks.

3. Degeneracy. The objective function in RANSAC relies on the assumption that a model gen-

erated from a contaminated minimal sample will have low support, thus making it possible

to distinguish between correct and incorrect models. This assumption may be violated when

degenerate configurations are encountered. For instance, in the case of epipolar geometry es-

timation with the 7-point algorithm (Hartley and Zisserman, 2000), when the minimal sample

comprises of five points that lie on a plane and two arbitrary points, the resulting model is

consistent with all points on the plane, though the resulting epipolar geometry is incorrect.

A number of techniques have been proposed in recent years to deal with these, as well as

other, limitations of RANSAC. To put these disparate techniques into context, we extend the simple
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hypothesize-and-verify structure of RANSAC and propose a Universal RANSAC framework, illus-

trated in Figure 3.1. This framework generalizes RANSAC by incorporating a number of important

practical and computational considerations. In the remainder of this section, we describe the various

components in Figure 3.1, and discuss the many variations and extensions proposed in the literature

within this unified context. In particular, note that all the techniques discussed below can be viewed

as special cases of the USAC framework.

3.2.1 Prefiltering (Stage 0)

The input to RANSAC is a setU, consisting of N data points. As seen in Section 2.2.3, the number

of iterations required by RANSAC is a function of the contamination in this set. Given that the

runtime of RANSAC is closely tied to the inlier ratio of the data, a few e↵orts have been targeted

towards improving the quality of the data points that form the input to the algorithm. Strictly

speaking, this step is not a part of the core framework itself, since it involves “cleaning up” the input

data before the algorithm commences. Furthermore, this step typically involves problem specific

constraints and heuristics, and is more closely tied to the step of data generation. It is worth noting,

however, that performing this step when applicable can significantly benefit RANSAC.

Considering the specific problem of estimating multi-view geometric relations, the input to

RANSAC is typically a set of feature matches. Considerable e↵ort has been directed towards im-

posing constraints on the output of a feature detector in order to provide a more reliable set of feature

matches (Schmid and Mohr, 1997; Tuytelaars and Gool, 2000; Jung and Lacroix, 2001; Cech et al.,

2008). In the RANSAC literature, one recent e↵ort that investigates the computational benefit of a

spatial consistency filter applied to an initial set of feature matches is SCRAMSAC (Sattler et al.,

2009). This consistency filter results in a reduced set of matches that are more likely to be correct,

in turn speeding up RANSAC by up to an order of magnitude.

3.2.2 Sample minimal subset (Stage 1)

Stage 1a: Sampling

In standard RANSAC, minimal subsets are generated by sampling uniformly at random from the set

of data points. In the most general setting, this implies that no assumptions are being made about
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1a. Sampling

0. Prefiltering

1b. Sample check

Sample minimal 
subset

2a. Model generation

2b. Model check

Generate minimal-
sample model(s)

3a. Verification

3b. Degeneracy

Is the model 
interesting?

Generate non-minimal 
sample model 4. Model refinement

Terminate?
NoConfidence in solution 

achieved?
Yes

Model parameters, inliers

Figure 3.1: The Universal RANSAC framework. The figure represents a generalized RANSAC
framework that takes into account a number of important practical and computational considera-
tions. USAC is a synthesis of various RANSAC techniques, and provides a unified view of recent
advances in this area. In addition to providing a common context for the di↵erent RANSAC vari-
ants, the combination of these techniques into a single robust estimation framework allows them to
interact with, and benefit from, each other. Thus, an implementation of the USAC framework as
sketched above, with state of the art algorithms for each individual module, allows us to address the
various limitations of RANSAC in a unified manner.

the data. In many practical situations, however, it may be possible to incorporate prior information

and bias the sampling with a view towards preferentially generating models that are more likely to

be correct. This can have a dramatic e↵ect on the e�ciency of RANSAC, particularly for low inlier

ratios. This simple observation has been explored in a number of ways in the RANSAC literature.

A review of some prominent work in this area follows.
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3.2.2.1 NAPSAC

The N-Adjacent Points Sample Consensus (NAPSAC) algorithm (Myatt et al., 2002) uses the obser-

vation that often, inliers in the data tend to be “closer” to one another than to outliers. Considering

an n-dimensional space, assume that outliers are distributed uniformly within a bounded region of

the space, and that inliers are distributed uniformly on a d-dimensional manifold within the same

region. Now consider a hyper-sphere of radius r, centered at a point on the manifold. The number of

inliers within the hypersphere is proportional to rd, whereas the number of outliers is proportional to

rn. Since n > d, this implies that as the radius decreases, the probability of finding an outlier in the

hyper-sphere decreases faster than the probability of finding an inlier. Thus, in NAPSAC, an initial

data point x0 is selected uniformly at random. Next, the algorithm finds a set of points S x0 such

that all points in the set lie within a hyper-sphere of radius r, centered around x0. If the number of

points in S x0 is less than the size of the minimal sample, then this set is discarded, and the sampling

process repeats afresh. Otherwise, points are selected uniformly from S x0 until a minimal sample

of size m has been selected.

One of the notable advantages of NAPSAC arises in the case of very high dimensional models,

where the probability of drawing an an uncontaminated sample is often low, even for relatively

uncontaminated datasets. On the other hand, one of the disadvantages of a NAPSAC style strategy

is that enforcing the spatial proximity requirement can make the algorithm prone to degeneracies.

In fact, specific techniques have been proposed to enforce exactly the opposite requirement – that

samples are prevented from incorporating data points that are too close to each other (Zhang et al.,

1995; Zhang and Kanade, 1998).

3.2.2.2 Guided sampling for MLESAC:

One of the deficiencies of the MLESAC approach (Section 2.3.4) lies in the computation of the

mixing parameter ". As noted earlier, this parameter is estimated by EM for every hypothesized

model. However, note that this parameter is really a prior property of the data, and not dependent on

the individual models. In (Tordo↵ and Murray, 2002), an observation is made that better hypothesis

have better likelihood scores for any mixing parameter. Thus, it is not necessary to solve for it using

EM at every iteration. To select the best hypothesis, it is actually su�cient to use a fixed mixing
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parameter for all hypotheses.

Going further, it is argued in (Tordo↵ and Murray, 2002) that instead of using a global mixing

parameter, it is preferable to use individual priors on a data point being correct, if available. In other

words, equations 2.15 can be rewritten as

p(ei) = p(vi)
� 1p

2⇡�2
e�
�e2

i
2�2

�
+ (1 � p(vi))

1
v

(3.1)

where vi is an indicator variable denoting whether the i-th data point is an inlier or not, and p(vi) are

the prior probabilities. For two-view geometric estimation problems, one way to obtain these priors

is to use scores from the feature matching stage. More specifically, assuming the i-th feature has ni

possible matches, denote the correctness of each of these matches as vi j, and the quality score as si j

with j = 1...ni. For a number of narrow-baseline image pairs, the distribution of the quality scores

si j for mismatches (v̄i j) was empirically shown to follow the distribution

p(si j|v̄i j) =
3(1 � si j)2

4
(3.2)

and for correct matches,

p(si j|vi j) = a
(1 � si j)
↵2 e�

⇥ 1�si j
↵

⇤2

(3.3)

where a is a normalisation constant and ↵ is a “compactness” parameter. These probabilities can

then be used to compute a value for p(vi j|si,1...ni), which is the probability that a tentative match is

correct, given the scores of all tentative matches. This probability can be used in equation (3.1)

as an estimate of the prior probability p(vi). In addition, hypothesis generation can be performed

through the use of Monte-Carlo sampling based on the computed priors, which was shown to reduce

the number of iterations in MLESAC by close to an order of magnitude.

3.2.2.3 PROSAC

The Progressive Sample Consensus (PROSAC) algorithm (Chum and Matas, 2005) uses a measure

of the quality of the data points in order to preferentially generate hypotheses that are more likely

to be valid. As opposed to Guided MLESAC (Section 3.2.2.2), PROSAC is less reliant on having

a very accurate prior distribution; rather, the prior is used to simply sort the points, and a new
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sampling strategy is used to select samples in a more meaningful order compared to RANSAC.

PROSAC can be viewed as a process that starts by deterministically testing the most promis-

ing hypotheses (generated from the most promising data points), gradually shifting to the sampling

strategy of RANSAC as the confidence in the a priori sorting based on quality scores decreases.

Consider a sequence of TN samples of size m drawn by RANSAC from the set of all N correspon-

dences. This sequence is denoted by {Mi}TN
i=1. Let {M(i)}TN

i=1 denote a sequence of the same samples,

but now sorted in descending order of sample quality. To find a sampling strategy, let Un denote

a subset of UN containing n points with the highest quality. The sequence {Mi}TN
i=1 contains, on

average, Tn samples containing points only fromUn, where

Tn = TN

⇣
n
m

⌘

⇣
N
m

⌘ (3.4)

Since we are interested in a sampling strategy that uses a progressively larger sampling pool, a

recurrence relation for Tn+1 may be obtained as

Tn+1 =
n + 1

n + 1 � m
Tn (3.5)

.

Observe that there are Tn samples containing points only fromUn and Tn+1 samples containing

points only from Un+1. Since the subsets Un+1 and Un are related as Un+1 = Un
S

un+1, there

are thus Tn+1 � Tn samples that contain a data point un+1 and m � 1 data points drawn from Un.

Therefore, to generate samples in the orderM(i), one can draw Tn+1 � Tn samples consisting of a

point un+1 and m � 1 data points drawn at random fromUn, for n = m...N.

In practice, PROSAC has been shown to achieve very significant computational savings, since

good hypotheses are generated early on in the sampling process. However, while the ordering based

on quality scores is less “local” than the NAPSAC strategy, it has been observed that invariably,

PROSAC too needs safeguards against degeneracies (Raguram et al., 2008). In addition, when the

quality scores are less helpful, for instance in the case of scenes with significant repetitive structure,

the performance gains obtained with PROSAC are less significant (Ni et al., 2009; Sattler et al.,

2009).
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3.2.2.4 GroupSAC

While the NAPSAC strategy aimed to exploit the observation that inliers tend to be “closer” to each

other than outliers, the recent GroupSAC algorithm (Ni et al., 2009) uses a more general version of

this observation – that inliers are often more “similar” to each other. Assuming that we can separate

data points into a number of groups that are similar according to some criterion, GroupSAC is a

sampling strategy that aims to exploit this grouping.

In RANSAC, the number of inliers in a minimal sample S can be expressed as IS ⇠ B(m, "),

where B(m, ") is a binomial distribution with parameter ", the inlier ratio. Thus, the probability of

an all inlier subset may be expressed as

p(IS = m) =
Y

xi2S
p(vi = 1) (3.6)

where vi is an indicator variable denoting xi being an inlier. In the absence of prior information, this

probability reduces to "m. While the techniques from (Chum and Matas, 2005; Tordo↵ and Murray,

2002) leverage the observation that p(vi = 1) is not necessarily the same for all points, the inlier

probabilities are still considered to be independent.

In GroupSAC, the data points are partitioned into a set of groups {Gi}, i = 1...K, with the

intuition that these groups tend to have either a high or a low fraction of inliers. Considering

the feature matching problem for an image pair, groups may be obtained by optical flow based

clustering. The assumption here is that the largest, more consistent clusters tend to have a higher

fraction of inliers. As in PROSAC, sampling scheme is devised that starts by testing a small subset

of the most promising groups, and gradually expands this to include all points.

While GroupSAC was shown to improve sampling e�ciency, its applicability hinges on finding

a grouping that makes sense in the context of the problem being considered. Furthermore, since

the grouping stage is a part of the robust estimation module, the particular grouping strategy used

(e.g., optical flow, image segmentation, etc.) should itself be very e�cient, so as to not appreciably

increase the overall runtime.
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Stage 1b: Sample check

Once a minimal sample has been generated, the next step in standard RANSAC is to compute model

parameters from this minimal sample. In some cases, however, it may be possible to insert a simple

test to first check whether the sample is suitable for computing model parameters. For instance,

when computing a homography from a sample of four points, a degenerate case occurs when three

of the four points are collinear. Including a simple test for collinearity would help immediately

discard such samples. While this step can eliminate spurious cases, care must be taken to ensure

that the test does not significantly impact the overall runtime.

3.2.3 Generate minimal sample model(s) (Stage 2)

Stage 2a: Model generation

In this step, model parameters are computed from the minimal subset. Note that in the minimal

case, a single sample could result in the generation of multiple solutions, each of which needs to be

evaluated by the algorithm. It is also worth noting that since the model parameters are generated

from minimal samples, the influence of noise is the largest possible. Consequently, it is advisable

that these minimal sample models should be used only after some form of refinement, either within

the algorithm, or through a post hoc procedure.

Stage 2b: Model check

In standard RANSAC, once a model has been generated, its support is determined by verifying the

model against all data points. It may be possible, however, to first introduce a preliminary test that

checks the model based on application-specific requirements or constraints, and then performs the

verification only if required. As a simple example, consider the case of fitting a circle to a set of

points, where only circles with a certain range of radii are desired. By first testing the validity of the

model parameters, it may be possible to completely skip the more expensive verification stage.

In (Chum et al., 2004), the computational benefit of a model check stage is demonstrated for the

case of epipolar geometry estimation. By noting that for real cameras, only points in front of the

camera are visible, it is possible to enforce oriented epipolar constraints via the model check stage.
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Each of the fundamental matrices is first tested to see whether it satisfies the oriented constraint.

If this test is passed, the support of the fundamental matrix is computed as usual. If not, then the

model may be discarded without further inspection. Since the oriented test is very e�cient relative

to verifying the model against all data points, this leads to a significant computational benefit. In

(Chum et al., 2004), it was shown that, depending on the scene, anywhere between 10%-92% of the

models could be rejected just based on this simple oriented constraint test.

3.2.4 Is the model interesting? (Stage 3)

In standard RANSAC, the goal of the model verification stage is to compute the support of the

model by evaluating all data points, and to return the model that gathers the largest consensus set.

We take a more general view, where the goal of this stage can be posed as providing an answer to

the question: is the model interesting?

Models generated from contaminated samples have arbitrary model parameters, and thus reveal

no useful information about data points that are not contained in the minimal sample itself. These

models can be viewed as “non-interesting”, and the goal of the verification process is to filter out

these models. On the other hand, “interesting” models, or those that are likely to lead to the largest

consensus set, are worth investigating further. In the USAC formulation, the notion of a model being

“interesting” has two components:

• The model is likely to be uncontaminated and gather large support.

• The model is non-degenerate.

While RANSAC seeks the answer to this question, the standard formulation is limited by the as-

sumptions made, as well as e�ciency concerns. In the USAC framework, the objective is to answer

this question while improving upon both the e�ciency and the robustness of the standard algorithm.

Stage 3a: Model verification

While the number of samples drawn by RANSAC depends on the inlier ratio and the model com-

plexity (equation (2.4)), an additional computational factor is the total number of correspondences

N, since a hypothesized model is verified against every data point. In particular, the runtime of
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RANSAC can expressed as

t = k(tM + m̄S tV ) (3.7)

where k is the number of samples, mS is the number of models per minimal sample, and tM and

tV denote the time required to compute model parameters, and to verify the model, respectively.

If for convenience, the time taken to verify a single point is chosen as the unit of time, then for

RANSAC, tV = N, where N is the number of data points. When N is large, the verification stage

can thus consume a large fraction of the total runtime. However, as noted in Section 2.2.3, the

number of uncontaminated samples generated in RANSAC is typically small. In turn, this implies

that almost almost all the hypothesized models are likely to be contaminated. If we assume that

these contaminated models will be consistent with only a few data points, then it may be possible

to discard “bad” models early on in the verification stage. As noted earlier, this assumption may be

violated when degenerate data is encountered; this issue will be discussed shortly.

A number of e↵orts in recent years have focused on making the verification stage of RANSAC

more e�cient. In this section, we review some of the important approaches in this regard. The

techniques in this section propose variations of the same basic idea: conduct a statistical test on a

small number of data points, and discard or accept the model based on the results of the test. The

basic statistical test can be generalized as follows: given a model from the hypothesis generation

stage, determine whether the model is “good” – i.e., it leads to the solution with maximal support, or

it is “bad” – i.e., one of the data points in the sample is an outlier. The property “good” is a hidden

state that is not directly observable, but is statistically linked to observable events. In the case of

RANSAC, the observable events are the results of the individual point evaluations.

The aim of the statistical test is to reduce the number of verified data points, and thereby the

time complexity of the verification step. On the other hand, this test has the side-e↵ect that a “good”

model may be incorrectly rejected, which in turn causes an increase in the total number of samples

drawn to achieve the ⌘0 confidence in the solution. Typically, as more data points are processed

by the test, the probability that a “good” model will be rejected reduces. The task is thus to find a

balance between the number of data points evaluated by the test and the increase in the number of

samples, such that the total runtime t from equation (3.7) is minimised.
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3.2.4.1 The Td,d Test

In (Matas and Chum, 2002), model verification is first performed using a subset of d randomly

selected points (where d ⌧ N). The remaining N � d points are evaluated only if the first d points

are all inliers to the model. An expression for the number of verified correspondences per test, tV ,

can be derived as a function of d as

tV (d) = Pg((1 � ↵)N + ↵t̄↵) + (1 � Pg)(�N + (1 � �)t̄�) (3.8)

where the first term represents the result of the test on a good sample, and the second is contributed

by a bad sample. Pg is the probability of drawing a good sample, ↵ is the probability that a good

sample does not pass the pre-verification test, and � is the probability that a bad sample passes

the test. t̄↵ and t̄� represent the average number of points tested in the two cases. Note that the

e�ciency of the test hinges on the relation � ⌧ (1 � ↵), in order for a bad sample to be consistent

with far fewer points than a good sample. The value ↵ may be approximated as 1 � "d and � as

�d, where � is the probability that a data point is consistent with an incorrect model. In (Matas and

Chum, 2002), an optimal setting of d = 1 was derived by minimizing the average time spent in the

pre-verification step. In other words, the T1,1 test checks a model against a randomly drawn data

point. If the model is consistent with the point, verification continues. If not, the model is discarded

and a new sample is generated. Note that a valid hypothesis may be mistakenly rejected by the Td,d

test. Thus, one of the consequences of this approach is that it requires many more hypotheses than

standard RANSAC. However, providing the hypothesis generation step is not too expensive, the

overall runtime is typically reduced due to the preverification procedure (Matas and Chum, 2002).

3.2.4.2 Bail-Out Test

The idea of early termination of bad hypotheses was further extended in (Capel, 2005). Given a

model to be scored, a randomly selected subset of n points is evaluated against the model. If the

observed inlier ratio within this subset, "n, is significantly less than the best inlier ratio observed so

far, "⇤, then it is unlikely that the current model will yield a larger consensus set than the current

maximum and can be discarded. More formally, given that In inliers have been seen within a subset
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of size n, the probability that the total number of inliers Ī for the current hypothesis will be greater

than the current best inlier count, I⇤ is given by

pcon f = p(Ī > I⇤) =
NX

Ī=I⇤
p(Ī|In, n,N) (3.9)

When this probability drops below a certain threshold (e.g., 1%), the model can be discarded. Since

equation (3.9) is di�cult to directly compute, an alternative is presented. The distribution of the

number of inliers In in a subset of n points follows a hyper-geometric distribution. The idea behind

the bail-out test is to compare the number of inliers seen within a subset of n points against a lower

bound Imin
n . If In < Imin

n , then bail-out occurs. In order to compute Imin
n , note that the hypergeometric

lower bounds may be approximated either using a binomial distribution for small values of n, or as

a normal distribution for large values of n.

It was shown in (Capel, 2005) that the bail-out test typically results in a factor of 2-7 improve-

ment in performance compared to standard RANSAC. Note, however, that the strategy outlined in

(Capel, 2005) does not account for the case where a good hypothesis might be incorrectly rejected

by the bail-out test. Thus, while the test is e↵ective in practice, it is not, strictly speaking, optimal.

3.2.4.3 SPRT test

Most recently, an optimal randomized model verification strategy was described in (Matas and

Chum, 2005; Chum and Matas, 2008). The test is based on Wald’s theory of sequential testing

(Wald, 1947). The theory was first applied for quality control in industrial inspection, with the goal

of deciding whether a batch of products was “good” or “bad”, while making the smallest number

of observations possible. The verification stage of RANSAC has a similar goal: to decide whether

a model is “good” (Hg) or “bad” (Hb). Wald’s SPRT test is a solution of a constrained optimiza-

tion problem, where the user supplies acceptable probabilities for errors of the first type (rejecting a

good model) and the second type (accepting a bad model) and the resulting optimal test is a trade-o↵

between the time to decision, and the errors committed. The SPRT test is based on the likelihood

ratio

� j =

jY

r=1

p(xr |Hb)
p(xr |Hg)

(3.10)
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where xr is equal to 1 if the r-th data point is consistent with a given model, and 0 otherwise. p(1|Hg)

denotes the probability that a randomly chosen data point is consistent with a good model, and this

can be approximated by the inlier ratio ". Similarly, p(1|Hb) is the probability that a randomly cho-

sen data point is consistent with a bad model, and this can be modeled using a Bernoulli distribution

with parameter �. If, after evaluating j data points, the likelihood ratio (3.10) becomes greater than

some threshold A, the model is rejected.

The decision threshold A is the main parameter of the SPRT test and can be set to achieve op-

timal runtime, assuming that the two parameters " and � are known a priori. In practice, however,

these parameters are typically unknown, and have to be estimated during the evaluation process,

adjusting the value of the threshold A, based on current estimates. For the case of multi-view geom-

etry problems, for instance, an initial estimate of the parameter � can be obtained through geometric

constraints. An initial value of " can be estimated from the maximum number of RANSAC itera-

tions that the user is willing to perform, and this may be updated by using the size of the largest

support found so far.

In the multi-view geometry estimation experiments in (Chum and Matas, 2008), it was shown

that the randomized verification procedure based on the SPRT test results a factor 2-9 runtime

improvement over standard RANSAC. While the performance of the bail-out and SPRT tests are

comparable for the case of higher inlier ratios (where the time to solution is low), the SPRT test was

found to perform approximately 20% faster than the bail-out test for more challenging problems

with lower inlier ratios.

3.2.4.4 Preemptive verification

The verification schemes discussed above are all depth-first in nature, meaning that a particular

model is completely evaluated before moving on to the next model. An alternate strategy is that

of breadth-first evaluation, introduced in (Nistér, 2003). A fixed number of model hypotheses are

generated beforehand and scored only on a subset of the data points. Subsequently, the models are

reordered based on the results of this scoring procedure, and only a fraction of these are evaluated on

the next subset of data. The process continues until only one hypothesis remains, or all data points

have been used. This type of evaluation procedure lends itself naturally to real-time applications,
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with a bound on the acceptable runtime.

A non-increasing preemption function f (i), i = 1, ...,N defines the number of model hypotheses

retained before evaluating the i-th data point. The preemption function used in (Nistér, 2003) is

f (i) = bM2(� i
B )c (3.11)

where M is the number of models in the initial set, and B defines the block size, which is the

number of data points that a model is evaluated against, before the reordering and preemption step

takes place. In e↵ect, this preemption function halves the number of surviving models after each

block of data points has been evaluated.

It is important to note that the objectives of standard RANSAC and preemptive RANSAC are

significantly di↵erent. The goal in RANSAC is to find, with predefined confidence, the best model

according to some cost function; the goal in preemptive RANSAC is to find the best model within

a fixed time budget. Since preemptive RANSAC starts with a set of hypotheses of fixed size, it is

not meant to adapt to the level of data contamination. In particular, if the inlier ratio in the data is

overestimated (i.e., too few hypotheses are generated), then the algorithm can return an arbitrarily

bad solution. On the other hand, for low-contamination problems, where only a few samples are

needed to find a solution, preemptive RANSAC can be much slower than standard RANSAC.

To experimentally evaluate the e↵ectiveness of the three depth-first verification methods (Sections

3.2.4.1–3.2.4.3) presented here, we compare their performance on synthetically generated test data

(these results were presented in (Raguram et al., 2008), with similar results being independently

presented in (Chum and Matas, 2008)). For this experiment, we estimate the epipolar geometry

from synthetically generated feature matches, over a wide range of variations in inlier ratio (") and

number of matched features (N). Gaussian noise (µ = 0,� = 0.2) was added to the pixel locations.

The performance of the Td,d, bail-out, and SPRT tests are compared against baseline RANSAC. A

representative subset of the results are shown in Figures 3.2 and 3.3. Figure 3.2 shows the number

of verifications per model as a function of the inlier ratio ", for four di↵erent values of N. Figure 3.3

shows the variation in the number of models generated, again as a function of " and N. The results

are averaged over 200 runs for each tested case.
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Figure 3.2: Results of synthetic data evaluation. Number of verifications per model (vpm) vs. inlier
ratio for four di↵erent values of N. From left-right in each group: RANSAC, Td,d, bail-out, SPRT.
Note that the y-axis uses a log scale

Figure 3.2 shows that the Td,d test succeeds in greatly reducing the number of verifications

per model. On the other hand, from Figure 3.3, it can be seen that the corresponding number of

hypotheses required is much larger. It can be seen that the performance of the bail-out and SPRT

tests are comparable over the range of parameter variations, with the SPRT producing greater speed-

ups on average. However, for high inlier ratios, when the total number of models generated is small,

the bail-out test can perform marginally better than SPRT, since the parameters in the SPRT are

initialized conservatively.

Stage 3b: Degeneracy

In general, data is said to be degenerate if it does not provide su�cient constraints to compute a

unique solution. Since RANSAC, in its standard form, does not have a safeguard against degen-

eracy, this can lead to incorrect solutions being returned by the algorithm. We now discuss some

approaches that address this problem.
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Figure 3.3: Results of synthetic data evaluation. Number of models evaluated vs. inlier ratio for
four di↵erent values of N. From left-right in each group: RANSAC, Td,d, bail-out, SPRT. Note that
the y-axis uses a log scale

3.2.4.5 Model Selection

One approach that has been employed to deal with the issue of degeneracy is that of model selection.

In this context, a degenerate solution can be thought of as a model with fewer parameters than the

correct model. This was the approach taken in (Torr et al., 1995), where a RANSAC technique

incorporating model selection, named PLUNDER, was used for epipolar geometry estimation. The

algorithm estimates multiple models, accounting for the various cases of degenerate estimation;

for instance, when the goal is to estimate a fundamental matrix, but the data only provides enough

constraints to estimate a homography or a�ne fundamental matrix. By using a suitable cost function

that penalizes models with more parameters, it becomes possible to find the simplest model that still

provides a good fit to the data. One such cost function is the Geometric Information Criterion (GIC)

(Akaike, 1974; Kanatani, 1996). For the problem of fitting a variety of dimension d to r dimensional

points, the GIC can be represented as

GIC = �2L + 2(dn + p) (3.12)
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where L is the log-likelihood of the model, n is the number of data points and p is the number

of parameters in the chosen model. It can be seen that the GIC equation has two terms: the first

corresponds to the badness of fit and the second to a penalty on the complexity of the model. In the

case of several competing models the objective is to find the model with the minimum value of GIC,

which represents the model with highest information content but least complexity. More specific to

the case of estimating geometric entities, (Torr, 1999) describes the Geometric Robust Information

Criterion (GRIC), which generalizes the GIC as

GRIC = �2L + �1dn + �2 p (3.13)

where �1 and �2 are now chosen to reduce overfitting. For the estimation of two view geometry from

feature matches, it is noted that �1 = 2 and �2 = 4 have provided good results over a wide range of

conditions. Note that while the model selection approach is general, one of its main disadvantages

is that it requires the separate estimation of multiple competing models. In practice, this can be a

significant computational overhead.

3.2.4.6 DEGENSAC

A recent example that shows the utility of a test for degeneracy is that of DEGENSAC (Chum

et al., 2005), where a detailed derivation is given for a nonlinear problem of epipolar geometry

estimation. In this case, a notable example of degeneracy is that of points lying on a scene plane.

In particular, when five of the seven image correspondences comprising the minimal sample for

fundamental matrix estimation lie on the same plane in 3D, then the resulting model is consistent

with all points that lie on the same plane. Consequently, in the case of images containing a dominant

scene plane, an incorrect solution is often returned by the algorithm, since the support for this

incorrect model may still be significantly high. To deal with this situation, a specific test was

devised that aimed to identify samples where five or more correspondences in a minimal sample

are related by a homography. The corresponding models are then subject to a model completion

step, where the goal is to find, if possible, non-degenerate inliers that could be used to compute the

correct model, given knowledge of the degeneracy.
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3.2.4.7 QDEGSAC

A more general technique for dealing with degeneracy was proposed in (Frahm and Pollefeys,

2006), which describes a framework for RANSAC with (quasi-) degenerate data (QDEGSAC).

The quasi-degenerate problem occurs when a majority of the data is degenerate, and thus does not

provide enough constraints to compute the model uniquely, and only a few non-degenerate data

points provide the remaining constraints. However, in the quasi-degenerate case, the probability

of these few points being sampled in RANSAC is considerably low, and thus RANSAC will most

often return the degenerate solution. QDEGSAC provides a solution to this problem for the case of

estimating linear relations. Given a data matrix A, whose rows contain the constraints provided by

the data points used to estimate the relation, the QDEGSAC framework can be viewed as a process

that robustly measures the rank rA of the data matrix, by using a sequence of calls to the RANSAC

algorithm. The first execution, RANSAC(p), estimates the most general model, which is appropri-

ate for non-degenerate data. Following this, a series of RANSAC runs are performed successively

on the inliers of the previous run, each run adding a linear constraint on the data. Thus, at the i-th

stage, the best rank p � i approximation to the data is computed in a robust sense (i.e., maximizing

the number of rows in the data matrix that can be considered inliers). Finally, the most constrain-

ing model that successfully explains at least 50% of the original inliers to the first RANSAC(p) is

returned as the solution. For the case of general linear estimation problems, QDEGSAC thus pro-

vides a solution to the degeneracy issue, while requiring a modest increase in computational cost.

Note that QDEGSAC is not a component of RANSAC per-se; rather, it can be viewed as a “meta-

framework” that uses a number of RANSAC runs to e↵ectively perform robust model selection. In

the context of Figure 3.1, for instance, QDEGSAC can be thought of as a wrapper around the USAC

framework.

3.2.5 Model refinement (Stage 4)

The use of minimal samples in RANSAC, coupled with the fact that data points are corrupted with

noise, has two important consequences:

1. A model generated from an all-inlier sample may not be consistent with all inliers. In e↵ect,

this leads to an increase in the number of RANSAC iterations.
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2. The final model returned by RANSAC may still be far from the global optimum, since noise

is not being compensated for in any way.

In practice, 1) is usually ignored, since a correct solution is still returned by the algorithm, only

at the expense of more computation. 2) is usually compensated for by a post hoc refinement proce-

dure which uses the solution returned by RANSAC as a starting point. However, it also possible to

simultaneously account for both 1) and 2) within the framework of the algorithm itself.

3.2.5.1 Local Optimization

In (Chum et al., 2003), an algorithm for Locally Optimized RANSAC (LO-RANSAC) was pro-

posed, which uses the observation that a model that is computed from an uncontaminated minimal

sample invariably contains a large fraction of inliers within its support. Thus, an optimization pro-

cess is inserted into the algorithm, using the current best solution as the starting point.

A number of optimization strategies can be adopted at this stage, trading o↵ accuracy for e�-

ciency. For instance, an inner-RANSAC procedure can be performed, wherein non-minimal samples

are selected from the set of inliers, and then used to compute refined models. This process is carried

out for a fixed number of iterations (typically 10 � 20), and the refined model with best support is

stored. Alternatively, an iterative approach may be employed, by first selecting all data points with

an error smaller than Kt with respect to the best model, where K is a predefined scale factor and t is

the error threshold. A new model can then be estimated using all the selected points. The threshold

scale factor is then reduced and this process iterated, until the threshold reaches a value of t. These

strategies may be combined: each (non-minimal) sample in the inner-RANSAC can be further sub-

ject to an iterative refinement procedure. This combined procedure was found to reduce the number

of iterations required in RANSAC by a factor of 2-3, bringing it to agreement with the theoretically

expected number. It can be shown that the number of times the local optimization is invoked is ap-

proximately equal to the logarithm of the number of samples drawn (Chum et al., 2003). However,

care must still be taken so that it does not significantly impact the overall runtime.
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3.2.6 USAC Implementation

In Section 3.2, we introduced a Universal RANSAC framework to provide a common context within

which to analyse various variants of RANSAC. However, it becomes immediately clear that this

framework can also provide the basis for a high performance robust estimator that addresses many

of the limitations of RANSAC within a single unified system. Thus, one of the goals of this work

is to provide a stand-alone C++ implementation that implements the Universal RANSAC frame-

work presented in the previous section. More specifically, while Section 3.2 discussed a number of

alternatives for each stage of the framework, we now describe a specific implementation that uses

an appropriate choice of algorithm for each module, keeping in mind concerns about robustness,

performance and generality. These algorithmic choices are also illustrated in Figure 3.4. We call

this implementation USAC-1.0 to emphasize that it is based on current state of the art techniques,

and can be extended as new advances emerge.

3.2.6.1 Sample minimal subset

Given a (possibly prefiltered) set of data points, the goal of this step is to generate a sequence of

minimal samples. From the discussion in Section 3.2.2, it is clear that the various sampling strate-

gies proposed in the literature all come with trade-o↵s. In particular, all these sampling strategies

invariably involve the preferential selection of samples that are in sensitive spatial configurations.

Consequently, it is advisable to couple this the non-uniform sampling stage with modules that han-

dle degeneracy detection and model refinement.

In our implementation, we choose the PROSAC (Section 3.2.2.3) sampling strategy for the sam-

ple generation stage. This choice was made to reach a compromise between performance, generality

and susceptibility to degenerate configurations. PROSAC is more easily applicable in the general

case than GroupSAC, and less susceptible to degenerate configurations than NAPSAC. PROSAC

requires an additional input in the form of ordering information for the data points in terms of their

quality scores, which is often available. For the two-view geometry experiments presented in the

next section, we use SIFT ratio scores (Lowe, 2004) to order putative feature correspondences.

In addition, once a minimal sample has been selected, problem-specific checks can be enforced

to eliminate undesirable minimal samples, as outlined in Section 3.2.2 (Stage 1b).
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Input data points
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Figure 3.4: USAC-1.0 implementation. We present a high-performance implementation of the gen-
eral framework of Figure 3.1, by use of state of the art algorithms for the individual modules. The
combination of these techniques results in a robust estimator that address many of the limitations
of standard RANSAC within a unified software package. In addition, by optionally invoking the
individual modules in isolation (e.g., just PROSAC sampling), the implementation can be modified
to behave like the corresponding variant of RANSAC.

3.2.6.2 Generate minimal sample model(s)

The process of model generation and checking are both dependent on the problem under consid-

eration. While the complexity of model generation lies outside the scope of USAC, it should be

noted that incorporating the model checking stage can significantly reduce the number of models

that propagate to subsequent stages of the algorithm. For the two-view geometry estimation case,

we use the oriented constraints check as outlined in Section 3.2.3.
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3.2.6.3 Is the model interesting?

The goal of this step is to e�ciently verify the model, and to check for degeneracy. We perform

verification using SPRT, as outlined in Section 3.2.4.3, which is the optimal strategy for randomized

model verification. This test requires two additional input parameters, " and �. As noted in Section

3.2.4.3, these parameters are initialized conservatively, and are updated as the algorithm progresses.

We choose to employ a specific degeneracy detection module that calls a user provided function

to check for model degeneracy once it has been verified to be the current best model. As seen in

the case of DEGENSAC (Section 3.2.4.4), this is with a view towards increasing robustness while

maintaining computational e�ciency. Note, however, that integrating the USAC algorithm with

QDEGSAC is simple: the sequence of calls to RANSAC that occur within QDEGSAC need to be

simply replaced by calls to USAC.

3.2.6.4 Generate non-minimal sample model

For refining the current best model, we use the Lo-RANSAC approach (Section 3.2.5.1), due to its

generality. We have found that the inner-RANSAC approach, coupled with an iterative reweighted

least squares procedure gives good results in practice. In our implementation, we make an additional

optimization in the interests of e�ciency: before performing the local optimization step, a check

is performed to determine the extent to which the current inlier set overlaps with the best inlier set

found so far. If this overlap is substantial (e.g., � 95%), then it is unlikely that the local optimization

will significantly improve upon the best result, and this step can be skipped. The e↵ect of this

enhancement is to prevent excess time from being spent in the computation of a locally refined

solution. In addition, when the number of inliers being input to the local optimization step is large,

this can lead to a computational bottleneck as well. In this event, performing the local optimization

step on a subset of the inliers helps mitigate this e↵ect and reduces the relative overhead, particularly

for the case of high inlier ratios.

3.2.6.5 Confidence in solution achieved?

As discussed in Sec. 2.2.3, the standard RANSAC algorithm terminates when the probability of

finding a set of inliers that is larger than the best support found so far falls under a predefined
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threshold ⌘0. For RANSAC, this probability can be computed as

⌘R = (1 � 1/"m)k, (3.14)

where k is the number of samples drawn so far. This gives rise to the standard stopping criterion in

equation (2.4). Two important modifications to this stopping criterion are discussed below.

Non-uniform sampling:

The use of non-uniform sampling results in good samples being drawn earlier on in the estimation

process. However, while good samples are drawn earlier, if the standard stopping criterion from

equation (3.14) is used with " being computed over the whole dataset, then the total number of

samples drawn will be the same as in standard RANSAC. Thus, a new method of computing the

stopping criterion is required. Since we use PROSAC for generating minimal samples we consider

two factors that determine when the algorithm should stop: non-randomness and maximality. The

intuition is to look for a stopping length n⇤ that satisfies both these constraints.

The probability of having i random inliers by chance within the subsetUn containing the n best

data points is given by a binomial distribution

pn(i) = �i�m(1 � �)n�i
 
n � m
i � m

!
, (3.15)

where � is the probability of a random point being consistent with a contaminated model.For each

n, the minimum size of “non-random” support is calculated as

Imin
n = min{ j :

nX

i= j

pn(i) <  }, (3.16)

where the inequality represents a simple p-value test to determine, for each n, the smallest support

such that the probability of randomness falls below  (set to 0.05 for a 5% significance test). The

stopping length n⇤ must have In⇤ � Imin
n .

The maximality constraint is again given by equation (3.14), and is used to ensure, with some

confidence, that no better solution exists within the setUn. Thus ⌘ = (1�1/"m
n )kn , where "n is given
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by In/n. The stopping length n⇤ is chosen to minimize the number of samples kn⇤ , subject to the

non-randomness constraint.

Randomized verification:

When a randomized verification strategy is adopted, there is a chance that good models may be

erroneously rejected by the verification step. Thus, the stopping criterion must now account for this

by drawing additional samples to achieve the same confidence. Since we use the SPRT test, the

probability of finding a better model than the current best one is given by

⌘ = (1 � (1 � ↵)/"m)k, (3.17)

where ↵ is the probability that a “good” model is rejected by the SPRT. In practice, ↵ is not con-

stant, being reestimated based on current estimates of the test parameters, " and �. Given an SPRT

threshold Ai computed using the current estimates of "i and �i, the probability of rejecting a good

model, with inlier fraction ", is ↵i = A�hi
i , where hi is computed from the relation

"(
�i

"i
)hi + (1 � ")(

1 � �i

1 � "i
)hi = 1. (3.18)

This implies that whenever the value of the SPRT threshold Ai is updated, this results in a new ↵i.

Given the lth SPRT test, the probability ⌘ from equation (3.17) is now given by the product over all

individual tests, as

⌘ =
lY

i=0

(1 � (1 � A�hi
i )/"m)ki . (3.19)

3.2.7 Evaluation

In this section, we evaluate the performance of the USAC-1.0 implementation against current state

of the art techniques, on a variety of estimation problems. Note that while robust estimators are

perhaps most frequently applied in geometric vision problems, USAC is a general robust estima-

tor, meaning that it can be used in virtually any scenario where models are being estimated from

contaminated data measurements.

One interesting feature of the software library we provide is that it has a modular structure,
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RANSAC SPRT PROSAC Local-opt USAC-1.0

A : " = 0.46,N = 2540
I 994±68 991±72 911±160 1137±27 1148±2

error 1.71±0.21 1.62±0.41 2.14±0.93 1.17±0.12 1.04±0.00
k 220 241 11 115 7/0

models 220 241 11 115 7/0
vpm 2540.0 80.3 2540.0 2540.0 426.7
time 40.62 7.16 2.46 34.72 5.71

B : " = 0.57,N = 1760
I 983±38 987±32 681±108 1003±3 1003±0

error 1.80±0.44 1.54±0.44 5.69±1.81 0.88±0.14 0.88±0.02
k 50 51 4 42 3/0

models 50 51 4 42 3/0
vpm 1760.0 106.3 1760.0 1760.0 640.6
time 6.83 1.60 0.71 4.75 1.28

C : " = 0.15,N = 514
I 70±4 71±4 56±11 74±0 74±3

error 1.88±0.68 1.87±0.52 4.63±3.44 1.13±0.07 1.19±0.33
k 16766 18800 11 11548 9/1

models 16766 18800 11 11548 8/0
vpm 514.0 25.4 514.0 514.0 110.4
time 940.73 470.07 0.66 652.88 1.81

D : " = 0.43,N = 1967
I 732±48 740±47 509±154 823±12 826±5

error 2.81±0.66 2.97±0.66 6.01±3.88 1.77±0.10 1.76±0.03
k 268 276 13 150 11/2

models 268 276 13 150 10/0
vpm 1967.0 41.6 1967.0 1967.0 494.7
time 39.54 7.17 2.13 28.44 3.46

E : " = 0.23,N = 1317
I 286±17 287±17 203±30 302±1 302±6

error 1.63±0.44 1.63±0.54 8.49±9.12 0.89±0.06 0.89±0.13
k 2433 2534 4 1717 4/0

models 2433 2534 4 1717 4/0
vpm 1317.0 18.4 1317.0 1317.0 374.1
time 254.62 57.50 0.50 196.90 1.26

F : " = 0.24,N = 454
I 96±6 96±6 92±11 104±0 104±0

error 2.99±0.93 2.98±0.86 4.12±1.74 1.94±0.04 1.94±0.08
k 2887 2994 769 1753 520/396

models 2887 2994 769 1753 125/0
vpm 454.0 18.3 454.0 454.0 26.5
time 148.44 71.65 39.64 98.48 7.84

Table 3.1: Results for homography estimation. The table lists, for each algorithm, the number
of inliers found (I), the error of the solution with respect to the “true” result (error), the number
of samples (k) and models (models), the number of verifications per model (vpm), and the total
runtime (time in milliseconds). For USAC-1.0, the table additionally lists, the number of samples
and models that are rejected by the sample/model check tests. The results are averaged over 500
runs of each algorithm (Table contd. on next page)
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RANSAC SPRT PROSAC Local-opt USAC-1.0

G : " = 0.10,N = 1114
I 95±7 96±6 94±10 106±0 106±0

error 2.43±0.83 2.45±0.60 2.78±1.07 1.35±0.03 1.35±0.02
k 111956 130890 10727 59736 6158/5347

models 111956 130890 10727 59736 811/0
vpm 1114.0 33.1 1114.0 1114.0 37.8
time 10447.26 3301.01 994.00 5637.83 26.34

H : " = 0.34,N = 495
I 151±11 152±10 99±24 168±0 168±0

error 2.22±0.45 2.23±0.51 6.81±3.12 1.44±0.00 1.43±0.00
k 663 669 9 354 8/2

models 663 669 9 354 5/0
vpm 495.0 15.1 495.0 495.0 124.0
time 36.00 16.05 0.53 27.71 6.13

I : " = 0.13,N = 979
I 115±8 116±7 99±16 122±2 122±0

error 2.67±2.19 2.63±2.01 11.57±18.51 1.15±0.77 1.04±0.09
k 29622 32247 1059 20327 791/688

models 29622 32247 1059 20327 103/0
vpm 979.0 26.6 979.0 979.0 47.6
time 2508.60 790.90 89.65 1732.38 8.23

J : " = 0.10,N = 994
I 93±6 93±5 90±7 99±0 99±0

error 3.43±1.42 3.13±1.01 11.43±4.10 2.52±0.36 2.59±0.27
k 75950 84329 12059 49533 7266/6511

models 75950 84329 12059 49533 755/0
vpm 994.0 30.8 994.0 994.0 38.0
time 6532.22 2134.44 1034.98 4266.51 25.74

Table 3.2: Results for homography estimation (contd.)

and can be easily configured to behave in a number of di↵erent ways. In particular, as noted in

Section 3.2, many of the important RANSAC variants can be interpreted as special cases of this

implementation. In its most reduced form, the implementation behaves exactly like the standard

RANSAC algorithm outlined in Algorithm 1. By “switching on” the individual modules of Figure

3.4, it becomes possible to independently evaluate the e↵ect that an specific module (e.g., PROSAC

based non-uniform sampling) has on the estimation results. The choice of modules and parameters

can be easily specified using a common configuration file. In other words, the implementation in

Figure 3.4 not only represents USAC-1.0, but, it also in e↵ect provides an implementation of a

number of RANSAC variants, all within a single, easily configurable software package. For the

experimental comparisons in this section, we thus configured our implementation to represent state

of the art robust estimators. In particular, we compare the performance of USAC-1.0 against the
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following:

1. RANSAC: the standard RANSAC algorithm, as laid out in Alg. 1. This denotes the baseline

for comparison.

2. SPRT: RANSAC with optimal randomized verification, which represents the state of the art

for e�cient model verification.

3. PROSAC: RANSAC with non-uniform sampling based on ordering data points by quality

scores, leading to e�cient hypothesis generation.

4. LO: RANSAC with local optimization, resulting in more accurate solutions.

In all experiments, since the ground truth is unknown, the true inlier ratios (along with the

ground truth inliers) were estimated by performing 107 evaluations of random models, followed by

a refinement step. Following this, the inliers were manually inspected to ensure validity of the data

points and to verify that no outliers were erroneously included. In all experiments, the results we

report are average values obtained over 500 executions of each algorithm.

3.2.7.1 Homography

We evaluate the performance of USAC-1.0 for the problem of 2D homography estimation. The

results are tabulated in Tables 3.1 and 3.2. The inlier ratios in the data range from 10%-57%, making

this a challenging dataset for robust estimation algorithms. The table lists, for each algorithm,

the number of inliers found, the number of hypotheses and models, the number of verifications

per model, and the total runtime (in milliseconds). For USAC-1.0, the table also lists the number

of hypotheses/models that are rejected by the sample/model check steps from Figure 3.4 (steps

1b and 2b). To determine the accuracy of the solution, we compute the Sampson error (Hartley

and Zisserman, 2000) and report the root mean square (RMS) value over 500 executions of each

algorithm.

It can be seen from the results that USAC-1.0 consistently delivers solutions that capture the

most inliers, and which are the most accurate in terms of mean error. This is due to the local

optimization step incorporated in the algorithm. In addition, the non-uniform sampling, optimized

model verification and sample/model check modules all result in significant computational savings.
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(b) Fundamental matrix
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(c) Essential matrix
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(d) Motion segmentation

Figure 3.5: Fraction of true inliers returned by each algorithm for four estimation problems. The
labels on the X-axis correspond to the datasets in Tables 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6. The plots
represent average values over 500 runs, for each algorithm and dataset. Note that for all four esti-
mation problems, USAC-1.0 consistently returns close to 100% of the true inliers. The USAC-1.0
and LO curves are virtually identical, as are the RANSAC and SPRT curves. PROSAC, while fast,
often returns solutions that have fewer inliers.

In particular, USAC-1.0 generates orders of magnitude fewer samples than standard techniques, and

evaluates fewer points per model. The overall runtime is thus on the order of a few milliseconds,

even for very low inlier ratios, representing e↵ective speedups ranging between 5x-520x compared

to RANSAC. It is worth noting that the combination of techniques in USAC results in consistently

good performance, even when individual techniques are relatively ine↵ective – for e.g., in examples

G, I and J in Table 3.2, where PROSAC-based sampling results in a significant runtime, while

USAC-1.0 remains very e�cient (10x-40x faster than PROSAC) due to the other optimizations

present.

USAC-1.0 in general has much lower runtimes compared to the other techniques tested, save for

PROSAC, which can sometimes be slightly faster than USAC-1.0. However, note that the solutions

delivered by PROSAC can be unstable, due to the fact that the points selected are often poorly

distributed in the image; we observed that the highest ranking points are typically spatially very
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(d) F-matrix A: USAC-1.0

Figure 3.6: Histogram of inlier counts (y-axis) over 500 runs, for RANSAC vs. USAC-1.0. The
graphs show results for homography estimation (a-b) for dataset A from Table 3.1 and fundamental
matrix estimation (c-d) for dataset A from Table 3.3. Note that the histogram of inlier counts is
more spread out for RANSAC, indicating that di↵erent inlier maxima are reached in di↵erent runs,
owing to the randomized nature of the algorithm. USAC-1.0, on the other hand, has a much more
peaked distribution, implying that the correct maxima is being reached on most executions.

close to each other. In USAC-1.0, this e↵ect is mitigated by the local optimization step, which

incurs a small additional computational cost but provides much more accurate and stable results.

This e↵ect is illustrated in Figure 3.5(a), which shows the fraction of true inliers that are returned by

each algorithm. Note from the graphs that USAC-1.0 typically returns a significant fraction of the

inliers, while the corresponding values for PROSAC are often much lower. This is due to the fact

that the local optimization step uses non-minimal samples to improve the accuracy of the model

parameter estimates, thus resulting in a larger consensus set. By reestimating model parameters

using the set of all inliers, the local optimization is able to “break out” of the spatially localized fits

provided by PROSAC-based sampling.

Another visualization of the stability of the results may be obtained by running each robust

estimator multiple times on the same dataset, and calculating the fraction of runs in which a partic-

52



RANSAC SPRT PROSAC Local-opt USAC 

(a) Homography: A 

(b) Fundamental matrix: A 

(c) Essential matrix: A 

Figure 3.7: Visualization of the stability of the estimation results for each of the five algorithms
evaluated. The results are shown for (a) homography estimation (dataset A from Table 3.1) (b)
fundamental matrix estimation (dataset A from Table 3.3) (c) essential matrix estimation (dataset
A from Table 3.5). In each graph, for every feature correspondence in the dataset (x-axis), we
determine the fraction of runs, out of 500, where that correspondence is classified as an inlier (y-
axis). The points on the x-axis are sorted in decreasing order of these probabilities. In the ideal case,
each true inlier would have a score of 100%, and each true outlier would have a score of 0%. It can
be seen that RANSAC and SPRT show comparable trends, while PROSAC is often significantly
worse, missing true inliers on many of the runs. The results for LO and USAC-1.0 are very stable,
and correspond closely to the ideal situation.

ular correspondence is classified as being an inlier. For homography estimation, this visualization

is presented in Figure 3.7(a), for dataset A from Table 3.1. In each graph, for each input feature

correspondence (x-axis), we plot the fraction of runs in which that correspondence is classified as

an inlier (y-axis). This provides an empirical estimate of the probability that a true inlier is correctly

classified by each robust estimation algorithm. The points on the x-axis are sorted in decreasing

order of these probabilities. In the ideal case, each true inlier would have a score of 100%, and

each true outlier would have a score of 0% . It can be seen that RANSAC, SPRT and PROSAC

show comparable trends; each of these algorithms misses some inliers on each run, thus further

underscoring the randomized nature of these methods. On the other hand, the results for LO and

USAC-1.0 are very similar, and correspond closely to the ideal situation. This is an indication that
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these methods successfully classify a majority of the inliers on every run of the algorithm and are

thus very stable.

Finally, note that the standard deviation of the number of inliers returned by USAC-1.0 is signif-

icantly lower than that of RANSAC. Figures 3.6(a) and 3.6(b) compare the histograms of retrieved

inlier counts over 500 runs of RANSAC and USAC-1.0, for image pair A from Table 3.1. It can

be seen that the number of inliers returned by RANSAC can vary quite widely, while the histogram

for USAC-1.0 is much more “peaked”, implying that a much more stable solution is returned in the

vicinity of the global maximum. This again, is due to the application of local optimization, which

by using non-minimal samples to compensate for inlier noise, ensures that the model parameters

are more stable. This also indicates that while computationally very expensive techniques such as

(Li, 2009) can be used to maximize the consensus set, USAC-1.0 achieves approximately similar

results, at a small fraction of the computational cost. USAC-1.0 is thus able to deliver more accurate

and stable solutions than current techniques, while doing so extremely e�ciently.

3.2.7.2 Fundamental matrix

We evaluate the performance of USAC-1.0 for the problem of fundamental matrix estimation using

the 7-point algorithm. These results are tabulated in Tables 3.3 and 3.4. The inlier ratios in the

data range from 22%-96%, and examples were chosen to cover a wide range of challenging cases:

narrow and wide baselines, scale change, repetitive textures, and dominant scene planes (a degener-

ate configuration for the fundamental matrix). The table lists the same statistics as for homography

estimation.

As before, it can be seen from the results that USAC-1.0 consistently delivers stable and accurate

solutions with low overall runtimes, with up to 4x-7000x speedups compared to RANSAC. The

case of fundamental matrix estimation is particularly challenging since care must be taken to avoid

degenerate solutions. PROSAC, in particular, can be prone to degeneracies, since even when there is

no dominant plane in the scene, the top ranked points often lie on the same surface. In urban scenes,

this will often lead to a degenerate solution (or one that is poorly conditioned). Note, for instance,

examples A and B in Table 3.3, where PROSAC returns solutions very quickly, but with high errors.

The DEGENSAC module in USAC-1.0 (step 3b in Figure 3.4) is able to e↵ectively detect and handle
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RANSAC SPRT PROSAC Local-opt USAC-1.0

A : " = 0.48,N = 3154
I 1412±50 1413±48 645±120 1480±33 1495±8

error 1.28±0.58 1.26±0.55 21.31±11.14 0.85±0.50 0.63±0.24
k 1420 1455 4 957 2/0

models 3499 3587 10 2359 4/0
vpm 3154.0 20.1 3154.0 3154.0 940.9
time 255.90 18.19 2.01 191.16 11.84

B : " = 0.57,N = 575
I 315±12 316±11 115±13 328±1 328±3

error 0.71±0.18 0.69±0.17 60.99±13.05 0.45±0.04 0.45±0.06
k 385 371 7 240 3/0

models 941 906 17 588 8/1
vpm 575.0 11.5 575.0 575.0 423.8
time 14.98 4.35 1.35 11.22 3.61

C : " = 0.38,N = 1088
I 381±13 381±12 295±16 398±11 406±4

error 1.79±1.27 1.81±1.22 30.49±2.68 1.07±0.83 0.58±0.28
k 7935 8403 4 5762 2/0

models 19578 20735 9 14221 3/0
vpm 1088.0 22.6 1088.0 1088.0 472.2
time 546.53 108.77 5.41 408.26 13.74

D : " = 0.22,N = 1516
I 324±10 324±9 313±19 333±3 334±3

error 0.93±0.47 0.94±0.46 1.30±0.63 0.54±0.27 0.49±0.22
k 267465 280961 6 198554 4/0

models 661141 694471 16 490798 12/4
vpm 1516.0 17.3 1516.0 1516.0 268.6
time 23892.92 3434.69 1.77 18008.08 3.32

E : " = 0.38,N = 422
I 141±6 141±5 137±5 152±6 153±5

error 2.96±2.46 2.75±2.35 2.06±1.37 1.89±2.10 1.34±1.25
k 12218 12776 798 7560 161/0

models 30628 32028 1984 18948 402/318
vpm 422.0 15.0 422.0 422.0 8.2
time 391.62 160.47 25.58 247.36 16.79

F : " = 0.38,N = 346
I 118±6 119±6 113±9 125±2 125±1

error 2.15±1.47 2.07±1.44 3.18±2.30 1.58±0.65 1.58±0.59
k 11427 11580 158 6490 64/0

models 28260 28632 386 16055 156/121
vpm 346.0 13.4 346.0 346.0 8.3
time 319.29 147.61 4.61 195.69 4.87

Table 3.3: Results for fundamental matrix estimation. The table lists, for each algorithm, the number
of inliers found (I), the error of the solution with respect to the “true” result (error), the number of
samples (k) and models (models), the number of verifications per model (vpm), and the total runtime
(time in milliseconds). For USAC-1.0, the table also lists the number of samples and models that
are rejected by the sample/model check tests. Results are averaged over 500 runs of each algorithm.
(Table contd. on next page)
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RANSAC SPRT PROSAC Local-opt USAC-1.0

G : " = 0.45,N = 904
I 388±10 388±11 291±53 401±5 402±7

error 1.92±1.14 1.86±1.13 8.74±5.02 1.04±0.74 0.89±0.77
k 1885 1956 23 1413 19/0

models 4659 4835 56 3491 46/15
vpm 904.0 15.7 904.0 904.0 224.5
time 111.37 24.55 2.57 94.32 5.52

H : " = 0.92,N = 786
I 685±37 690±36 588±0 712±31 722±0

error 2.77±6.43 2.24±5.78 23.65±0.00 1.85±5.57 0.29±0.00
k 14 15 1 11 1/0

models 34 36 3 25 3/0
vpm 786.0 299.8 786.0 786.0 675.7
time 0.85 0.59 0.12 9.31 15.61

I : " = 0.96,N = 2776
I 2621±6 2622±7 2195±0 2628±9 2657±1

error 6.15±3.41 6.51±3.53 7.92±0.00 4.81±3.63 0.47±0.06
k 5 5 1 5 1/0

models 12 12 1 11 1/0
vpm 2776.0 1845.4 2776.0 2776.0 2770.5
time 0.91 1.09 0.22 5.76 15.05

J : " = 0.93,N = 2456
I 2142±80 2157±71 1821±0 2264±11 2277±4

error 4.26±2.64 3.98±2.35 21.84±0.00 2.52±0.61 0.32±0.30
k 12 14 1 6 1/0

models 27 32 3 14 3/0
vpm 2456.0 647.8 2456.0 2456.0 2454.4
time 2.07 1.09 0.36 11.57 12.46

Table 3.4: Results for fundamental matrix estimation (contd.)

these cases. When the scene contains a dominant plane (examples H� J), all techniques that do not

account for degeneracy return incorrect solutions. This is illustrated in Figure 3.8, which depicts

sample epipolar geometries for degenerate and non-degenerate solutions provided by RANSAC and

USAC-1.0, respectively. Note that for degenerate solutions, the epipolar lines are consistent with

points on the dominant plane, but not with o↵-plane inliers. Figure 3.5(b) shows the fraction of

true inliers that are returned by each algorithm. Note that USAC-1.0, due to the local optimization,

typically returns all true inliers. In addition, the histograms of inlier counts (Figures 3.6(c) and

3.6(d)) indicate that, as for the homography, USAC-1.0 returns very stable solutions due to the local

optimization.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Example degenerate (left) and non-degenerate (right) epipolar geometries for three
scenes containing dominant scene planes. Figures (a), (c) and (e) are results produced by RANSAC,
while (b), (d) and (f) are computed with USAC-1.0. The figures show some selected epipolar lines
corresponding to inlier correspondences. Note that for the degenerate cases, the epipolar geometry
is consistent with points on the dominant plane, but not with the (fewer) o↵-plane inliers.

3.2.7.3 Essential matrix

We evaluate the performance of USAC-1.0 for the problem of essential matrix estimation using the

5-point algorithm (Nistér, 2004). These results are tabulated in Table 3.5, with inlier ratios in the
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RANSAC SPRT PROSAC Local-opt USAC-1.0

A : " = 0.85,N = 2471
I 1975±22 1990±21 1960±20 2082±5 2085±5

error 1.49±1.01 1.44±1.07 1.91±1.83 0.83±0.41 0.81±0.18
k 14 16 1 10 1/0

models 58 66 6 40 6/1
vpm 2471.0 199.9 2471.0 2471.0 410.2
time 9.12 3.03 1.05 8.34 1.18

B : " = 0.77,N = 582
I 399±14 404±14 307±19 437±9 437±8

error 2.18±1.53 2.14±1.44 2.46±2.11 1.09±0.43 1.07±0.43
k 32 31 7 25 7/0

models 140 137 30 88 31/13
vpm 582.0 37.9 582.0 582.0 38.0
time 8.42 4.65 1.93 7.91 2.12

C : " = 0.65,N = 1110
I 646±18 646±17 496±14 715±3 713±4

error 2.94±2.20 2.99±2.25 3.99±3.06 1.01±0.25 1.06±0.31
k 73 77 12 48 12/0

models 281 299 45 214 44/11
vpm 1110.0 37.2 1110.0 1110.0 94.5
time 24.41 10.60 4.10 17.02 5.21

D : " = 0.60,N = 962
I 544±12 546±14 411±12 564±7 565±6

error 4.56±2.03 4.51±2.25 8.51±4.40 1.57±0.80 1.54±0.76
k 80 82 6 65 6/0

models 354 366 20 290 21/2
vpm 962.0 60.1 962.0 962.0 148.1
time 27.56 12.58 1.79 17.48 2.03

E : " = 0.35,N = 1207
I 395±16 396±15 335±32 418±8 418±8

error 2.21±1.48 2.47±1.74 9.27±9.55 0.99±0.59 0.98±0.54
k 1321 1363 17 887 19/0

models 5948 6139 73 3989 83/25
vpm 1207.0 18.3 1207.0 1207.0 72.2
time 522.77 193.18 6.71 348.49 6.12

F : " = 0.26,N = 2273
I 537±23 536±22 456±28 585±5 586±5

error 1.82±0.57 1.76±0.62 5.39±2.03 1.10±0.25 1.08±0.28
k 6826 7830 41 4117 35/0

models 29281 33580 198 17631 155/64
vpm 2273.0 20.7 2273.0 2273.0 25.6
time 4100.09 1101.12 27.41 3746.64 17.81

Table 3.5: Results for essential matrix estimation. The table lists, for each algorithm, the number
of inliers found (I), the error of the solution with respect to the “true” result (error), the number
of samples (k) and models (models), the number of verifications per model (vpm), and the total
runtime (time in milliseconds). For USAC-1.0, the table additionally lists the number of samples
and models that are rejected by the sample/model check tests. The results are averaged over 500
runs of each algorithm.
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data ranging from 26%-86%. We tabulate the same statistics as for the fundamental matrix, with the

error again being given by the Sampson distance. The dominant plane degeneracy is not an issue

for the 5-point method. However, the time to compute a minimal solution is more than that for the

7-point. In this context, note that even for very low inlier ratios (such as in example F in Table 3.5),

USAC-1.0 is still able to deliver correct solutions with low runtimes – in fact, well within real-time,

which is useful for real-time 3D reconstruction systems.

3.2.7.4 Motion segmentation

Finally, as an example of multi-model fitting, we evaluate the performance of USAC-1.0 for the

problem of segmenting multiple motions. While USAC, like RANSAC, is not specifically designed

to handle this case, it can still provide good results, particularly when the number of motions is

known beforehand. When multiple models are to be estimated, a common strategy is to use a

sequence of calls to the algorithm:

1. Apply the algorithm to the original dataset in order to recover the most dominant model, along

with its set of inliers. All other points (including inliers to the other models) are considered

to be outliers to this first model.

2. Remove all inliers for the current model, and repeat step 1 until all models have been recov-

ered.

This form of iterative robust estimation has been investigated for many applications, including mo-

tion segmentation (Tron and Vidal, 2007). For the experiments in this section, we consider a pair of

images and compute tentative feature correspondences. Then, we estimate a sequence of epipolar

geometries using the 7-point algorithm as before. These results are tabulated in Table 3.6. For each

dataset, the table lists summary statistics for each model present. The number of models ranges

from 2-3, and is assumed to be known beforehand. Note that the e↵ective inlier ratio for each in-

dividual model can be significantly low, since inliers to one model are outliers to the others. Note

that even for these low inlier ratio problems, USAC-1.0 is still able to return accurate solutions in a

computationally e�cient manner.

59



RANSAC SPRT PROSAC Local-opt USAC-1.0

A : "1 = 0.72,N1 = 1643
"2 = 0.33,N2 = 465

model
M1 I 1152±21 1153±20 1015±10 1176±5 1176±4

error 1.02±0.51 1.06±0.49 8.51±5.14 0.35±0.09 0.33±0.04
k 81 85 3 53 3/0

models 170 175 7 107 7/0
vpm 1643.0 19.1 1643.0 1643.0 640.2
time 15.90 5.19 1.51 9.16 4.84

M2 I 132±15 133±14 104±21 153±1 153±1
error 1.23±0.64 1.26±0.63 4.21±2.04 0.25±0.08 0.22±0.07

k 39335 43133 79 13404 66/0
models 82604 88423 175 29491 141/34

vpm 491.0 14.1 628.0 467.0 20.5
time 1082.30 198.19 13.01 442.12 6.70

B : "1 = 0.43,N1 = 619
"2 = 0.36,N2 = 353

model
M1 I 245±18 246±17 215±13 263±3 263±4

error 1.12±0.78 1.16±0.75 3.21±1.14 0.83±0.13 0.84±0.14
k 3233 3693 7 2014 4/0

models 6942 7034 15 4269 8/0
vpm 619.0 18.4 619.0 619.0 240.9
time 115.31 42.52 1.31 81.67 3.34

M2 I 121±10 122±11 93±8 127±4 127±4
error 1.07±0.41 1.11±0.53 5.34±2.39 0.76±0.12 0.76±0.14

k 14495 19645 18 6865 16/0
models 33341 43808 41 14794 36/14

vpm 369.0 20.1 404.0 356.0 57.2
time 365.13 78.91 4.19 162.15 9.31

C : "1 = 0.31,N1 = 858
"2 = 0.37,N2 = 592

model
M1 I 259±5 259±3 215±13 263±1 263±1

error 0.84±0.22 0.82±0.21 2.45±1.17 0.34±0.10 0.33±0.11
k 18834 21671 16 12789 12/0

models 41540 47676 41 28136 28/6
vpm 858.0 18.8 858.0 858.0 332.6
time 1006.90 188.98 3.01 714.60 9.84

M2 I 201±12 202±11 155±16 217±3 217±2
error 1.78±0.62 1.76±0.65 12.32±5.81 0.57±0.11 0.53±0.14

k 7377 7831 217 3657 189/0
models 15492 16545 477 8045 440/351

vpm 599.0 14.3 643.0 595.0 39.9
time 264.90 78.32 7.01 151.16 9.14

D : "1 = 0.31,N1 = 1277
"2 = 0.36,N2 = 879
"3 = 0.39,N3 = 559

model
M1 I 393±5 393±4 344±11 397±0 397±0

error 1.43±0.52 1.46±0.55 2.27±0.64 1.05±0.01 1.06±0.01
k 12877 13907 14 10921 8/0

models 28137 31013 29 24026 20/2
vpm 1277.0 27.5 1277.0 1277.0 307.3
time 886.91 184.24 3.55 567.42 8.38

M2 I 314±5 314±3 287±4 320±0 319±1
error 1.08±0.33 1.12±0.31 2.44±1.08 0.21±0.01 0.23±0.03

k 5289 5817 281 3921 204/0
models 11435 13205 646 8626 500/312

vpm 884.0 16.6 933.0 880.0 120.0
time 319.63 48.17 33.39 191.31 17.37

M3 I 203±9 204±8 165±2 214±1 214±1
error 2.53±0.66 2.51±0.65 6.40±3.82 0.67±0.13 0.63±0.14

k 5042 5445 572 2818 369/0
models 10878 12415 1186 6481 913/692

vpm 570.0 24.9 646.0 560.0 28.5
time 216.21 47.08 117.36 137.76 29.72

Table 3.6: Results for motion segmentation. The images show inliers to each individual motion,
denoted with di↵erent colours. The table lists the same summary statistics as before, reported for
each individual motion. The results are averaged over 500 runs.
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3.2.8 Summary

In this section, we have presented a comprehensive overview of the state of the art in RANSAC-

based robust estimation. To provide a unified context for this analysis, we have proposed a Univer-

sal RANSAC framework, which is a synthesis of the various optimizations and improvements that

have been proposed to RANSAC over the years. This framework provides a common context within

which to analyse current state of the art robust estimation algorithms, and to investigate the inter-

play between these varied algorithmic components. As a second contribution, we have developed a

stand-alone C++ library that implements the Universal RANSAC framework using state of the art

algorithms for each stage (USAC-1.0). The implementation is modular, and the e↵ect of individual

optimizations can be studied in isolation, as well as in combination with each other. We have evalu-

ated its e↵ectiveness on a challenging collection of estimation problems, thereby demonstrating the

significant advantages of unifying the various RANSAC techniques.

3.3 Adaptive Real-Time Random Sample Consensus

(ARRSAC)

Section 3.2 discussed a number of RANSAC techniques that aim to improve upon the e�ciency

and robustness of the standard RANSAC algorithm. While these e↵orts have shown considerable

promise, it is also the case that none of them are directly applicable in situations where real-time

performance is essential. This is primarily due to the fact that in order to achieve an ⌘0 confidence

in the solution, all these methods draw an arbitrary number of samples, which could potentially be

quite large for low inlier ratios. In the case of real-time systems the goal is to achieve the threshold

when possible; however, when this is not the case, it is desirable to obtain the best solution given the

time constraints. More specifically, the fixed time constraint implies that the maximum number of

hypotheses generated must be bounded by some (predefined) number. The main challenge is thus

to enable robust estimation even under this hard constraint.

Relatively fewer e↵orts have been directed towards the goal of formulating RANSAC in a man-

ner that is suitable for this scenario. In Section 3.2.4.4, we discussed one such e↵ort – preemptive

RANSAC – where a fixed number of hypotheses are evaluated in a parallel, multi-stage setting.
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In this case the goal is to find, within a fixed time budget, the best solution from a restricted set

of hypotheses. As opposed to depth-first preemptive schemes (Sections 3.2.4.1–3.2.4.3), where a

particular hypothesis is completely evaluated before moving on to the next hypothesis, preemp-

tive RANSAC uses a breadth-first approach, where all the hypotheses generated are evaluated on

a subset of the data points. Subsequently, the hypotheses are reordered based on the results of this

scoring procedure, and only a fraction of the hypotheses are evaluated on the next subset of data. A

non-increasing preemption function defines the number of hypotheses retained after each stage of

preemption. The preemption function used in (Nistér, 2003) is of the form

f (i) = bM2(� i
B )c, (3.20)

where M is the number of models in the initial set, and B defines the block size, which is the

number of data points that a model is evaluated against, before the reordering and preemption step

takes place. In e↵ect, this preemption function halves the number of surviving models after each

block of data points has been evaluated. This process continues until only one hypothesis remains,

or all data points have been used.

While preemptive RANSAC facilitates real-time implementation, there exist a few limitations in

the scheme. One of the primary limitations of preemptive RANSAC is its inherent non-adaptiveness

to the data. The selection of a fixed number of hypotheses implicitly implies that a good prior

estimate of the inlier ratio is available; in practice, this is often not the case. For low contamination

problems, preemptive RANSAC is often slower than standard RANSAC, since it evaluates many

more hypotheses than necessary. On the other hand, when the inlier ratio is too low, preemptive

RANSAC is unlikely to find a good solution, since it does not test enough hypotheses.

In this section we propose a new framework for real-time robust estimation, termed Adaptive

Real-Time Random Sample Consensus (ARRSAC), that aims to overcome these limitations of pre-

emptive RANSAC. One of the main challenges in real-time robust estimation lies in being able to

adapt to the strict limitations presented by the fixed time budget; namely, the generation of a pre-

defined number of hypotheses. The framework we develop is able to cope with variations in the

contamination level of the data, while at the same time providing accurate estimation at real-time

speeds. As in Section 3.2, our approach builds upon the strengths of state of the art RANSAC
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methods, and combines them in a way that is suitable for real-time robust estimation. In this sense,

ARRSAC may be viewed as a variation of USAC, with modifications made to enable real-time

operation.

3.3.1 The approach

In this section, we describe the main ideas we adopt in order to design a real-time robust estimation

framework. From the discussion on preemptive RANSAC (Section 3.2.4.4), it can be seen that

the number of hypotheses M in the initial candidate set is fixed a priori. In a real-time setting,

this ensures that the runtime of the algorithm is bounded. However, fixing this number beforehand

e↵ectively places a restriction on the inlier ratio. When the true inlier ratio is high, preemptive

RANSAC evaluates far too many samples. On the other hand, when the true inlier ratio is low, the

likelihood that preemptive RANSAC finds a correct solution decreases drastically.

The breadth-first scan advocated by preemptive RANSAC is indeed a natural formulation for

real-time applications, since the primary constraint is the fixed time-budget. On the other hand,

adapting the number of hypotheses to the contamination level of the data requires an estimate of

the inlier ratio, which necessitates the adoption of a depth-first scan. The ARRSAC framework

retains the benefits of both approaches (i.e, bounded run-time as well as adaptivity) by operating

in a partially depth-first manner. Hypotheses for the initial candidate set are generated one-by-

one, and are evaluated on the first data block. Bad hypotheses are discarded based on a depth-first

preemptive strategy. Hypotheses that pass this verification procedure provide an estimate of the

inlier ratio, which is used to determine the required number of hypotheses, keeping the upper limit

fixed at M. Note that since the evaluation is performed on only a subset of the data (thus, partially

depth-first), the estimated inlier ratio may be either above or below the true inlier ratio. In view of

this fact, the ARRSAC algorithm allows the generation of additional hypotheses at a later stage in

the evaluation process.

While the above discussion describes a method for adaptively determining the number of hy-

potheses, note that there is still an upper limit on the size of the hypothesis set. In such a scenario,

it is then important to choose a strong set of candidate hypotheses, since this facilitates good per-

formance at low inlier ratios. ARRSAC accomplishes this by adopting a non-uniform sampling
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approach, generating hypotheses from the highest quality matches. Note, however, that even in the

absence of information to guide non-uniform sampling (or when this does not help), ARRSAC still

has a bounded runtime. This is in contrast with strategies such as PROSAC, which in the worse case

operates like RANSAC (and hence has a potentially large runtime).

From the point of view of model accuracy, once a hypothesis passes the verification test, it is

also possible to generate new hypotheses by sampling from data points that are consistent with this

good hypothesis – in other words, to perform local optimization (see Section 3.2.5). In the interest

of computational e�ciency, we adopt a simpler local optimization scheme than in USAC, simply

generating a fixed number of non-minimal model hypotheses (the “inner RANSAC” approach from

(Chum et al., 2003)) from the set of inliers to the current best model. An important advantage

of the competitive evaluation framework is that ARRSAC does not spend excessive time in local

optimization, since the hypotheses generated in the inner RANSAC are forced to compete among

themselves. This prevents the algorithm from spending excessive time in the refinement, which is

advantageous when the inlier ratio is high.

Finally, while the partially depth-first evaluation strategy described above serves to adaptively

determine the number of hypotheses, it also provides an additional computational advantage. In the

original preemptive RANSAC algorithm, hypotheses are evaluated on all B data points in a block

before the reordering and preemption step takes place. As we have noted earlier, this constitutes an

unnecessary overhead since most of the generated hypotheses are likely to be contaminated. Thus,

in ARRSAC, bad hypotheses are discarded after partial evaluation and only the hypotheses that

survive are selected for propagation to subsequent stages of evaluation. The preemption function in

Equation 3.20 thus e↵ectively defines an upper bound on the number of hypotheses required for the

next stage of evaluation. The number of good hypotheses that need to be reordered and propagated

in ARRSAC is typically much less than this bound.

To summarize the main contributions of the ARRSAC algorithm: the adoption of a partially

depth-first strategy for hypothesis generation provides a larger degree of control over the initial set.

Adaptively determining the number of hypotheses ensures computational e�ciency for higher inlier

ratios. Furthermore, this strategy also allows more control over the quality of hypotheses that are

included in the initial set, thereby increasing the likelihood of obtaining a good solution even for low
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Algorithm 2 The ARRSAC algorithm
Initialization
Set values for M (max. number of candidate hypotheses) and B (block size)
1. Generate initial hypothesis set (Algorithm 3)
Set n = total number of hypotheses generated in the initial stage
2. Preemptive evaluation
for i = B + 1 to N do

for all valid models in the current set do
Score model hypotheses using data point i
Evaluate SPRT test (Section 3.2.4.3)
if model rejected then

n = n � 1
Mark current model as invalid and continue to next

else
Update score for current model

end if
end for
if (i mod B) = 0 then

n =min( f (i), n/2)
Reorder based on hypothesis scores and select hypotheses h(1), ..., h(n)
if n = 1 then

Break with the remaining hypothesis as the top one
end if

end if
end for
Return best model in h(1), ..., h(n)

inlier ratios. The use of optimized verification techniques is geared towards improving the overall

e�ciency of the algorithm. Finally, it is also possible to integrate a simple local optimization scheme

into the algorithm, thereby improving the accuracy of the estimated model parameters. It is worth

noting that unlike preemptive RANSAC, the proposed method does not make a strong assumptions

about the inlier ratio in the data being processed. This ability to e�ciently adapt to the data and

provide accurate real-time robust estimation makes ARRSAC easily deployable in real-time vision

systems.

3.3.2 Algorithm Description

The ARRSAC algorithm is presented in Algorithms 2 and 3. Below, we discuss some of the aspects

of the algorithm.
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Algorithm 3 ARRSAC: Generating the initial hypothesis set
k = 1, M0 = M, countin = 0, Inner RANSAC flag: f lagin = 0
Set max number of inner RANSAC iterations: Min
repeat

if f lagin = 0 then
Generate hypothesis h(k) by selecting the k-th PROSAC sample

else
Generate hypothesis h(k) by sampling non-minimal subset fromUin
countin = countin + 1
if countin = Min, reset countin = 0, f lagin = 0,Uin = {}

end if
Evaluate hypothesis h(k) using SPRT test (Section 3.2.4.3)
if hypothesis h(k) is accepted then

if largest support so far and f lagin = 0 then
f lagin = 1, countin = 0
SetUin = support of hypothesis h(k)

end if
Calculate termination length and number of hypotheses M0 (Equation 3.14, 3.16)

end if
k = k + 1

until (k > M0)
Return k, set containing accepted hypotheses

3.3.2.1 Generating the initial hypothesis set:

Algorithm 3 sketches out the selection of the initial candidate set of hypotheses in ARRSAC. The

main di↵erences between this step and preemptive RANSAC are that (a) we perform PROSAC-

style sampling in order to preferentially generate better hypotheses in the candidate set (b) we use

a depth-first preemption strategy when generating this set, in order to discard bad hypotheses early

on (c) use of simple local refinement to improve the quality of the hypotheses and (d) we determine

the number of hypotheses adaptively, using the PROSAC stopping criterion (see Section 3.2.6.5).

One way to think about this stage of the algorithm is as a batch-mode PROSAC, where the

evaluation is restricted to a subset (i.e., block of size B) of data points with the highest quality scores.

In addition, note that we cap the maximum number of hypotheses in the initial set at M, ensuring

that the total number of generated hypotheses is bounded. In the event that the ordering based on

quality scores does not help, it is indeed the case that ARRSAC too might fail to return a good

solution, much like preemptive RANSAC. There is thus a trade-o↵ between e�ciency (i.e., real-

time performance) and accuracy. However, as our experiments have indicated, this situation does
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not arise frequently in practice, and ARRSAC is able to operate e↵ectively in real-world application

scenarios.

3.3.2.2 Preemptive evaluation:

The initial candidate set in ARRSAC is generated using a partially depth-first approach. For the

evaluation of the surviving hypotheses, we adopt a strategy similar to preemptive RANSAC, but

with some key di↵erences. In particular, while preemptive RANSAC uses the fixed preemption

function in Equation 3.20, ARRSAC is more flexible in this regard. At any given point, there are

typically much less than f (i) hypotheses in the set, due to the fact that contaminated hypotheses are

discarded using the SPRT test. In practice, this turns out to be a significant computational saving

(see Section 3.3.3). In Algorithm 2, after every evaluation of B data points, the surviving models

are re-ordered based on the results of the evaluation on the current block, and the best half are

propagated for the next round of evaluation.

3.3.3 Experimental evaluation

We now present an evaluation of the proposed algorithm on synthetic and real data. Recall from

the discussion in Section 3.3, that the main challenge for real-time robust estimation is the ability to

deal with a predefined limit on the maximum number of hypotheses. In other words, the algorithms

should ideally be able to cope with variation in the level of data contamination, etc., while still

retaining robustness in the face of the hypothesis constraint. To this end, we fix the maximum

number of hypotheses for both preemptive RANSAC and ARRSAC, and test the ability of these

algorithms to handle challenging datasets.

We first evaluate the e↵ectiveness of preemptive RANSAC on synthetic data, over a range of

parameter variations. The goal in this case is not to examine the number of verifications or the

execution time (which are constant). Rather, we seek to examine the ability of preemptive RANSAC

to cope with varying, and a priori unknown, inlier ratios. To do so, we generate synthetic 2D feature

matches corresponding to a hypothetical fundamental matrix, and perturb the feature locations in

each image by zero-mean Gaussian noise with � = 0.50. A varying number of outlier matches are

then added to the set of inliers to obtain a set of putative correspondences with a range of inlier
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Figure 3.9: (a) Variation in fraction of inliers found by preemptive RANSAC as a function of inlier
ratio. (b) Number of successful runs (out of 500), defined as those where preemptive RANSAC
returned � 50% of the inliers in the data, plotted as a function of inlier ratio.

ratios. We then run preemptive RANSAC on these sets of putative feature matches, fixing M (the

number of hypotheses in preemptive RANSAC) to 400. In the context of the standard stopping

criterion (Equation 2.4), using the the 7-point algorithm for fundamental matrix estimation, this

number of iterations corresponds approximately to a setting of ⌘0 = 0.95 and " = 0.50.

Figure 3.9(a) shows the fraction of true inliers returned by preemptive RANSAC, as a function

of ", for three di↵erent values of N (total number of correspondences). The plots represent average

values over 500 runs of the algorithm. The main trend to be observed from the graph is that for

higher inlier ratios (e.g., " � 0.55), preemptive RANSAC returns at least 95% of the true inliers on

average. Note that this does not correspond perfectly to the true parameter setting of " = 0.50, which
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Figure 3.10: Number of hypotheses scored at each stage of evaluation in preemptive RANSAC and
ARRSAC, for three values of ". For this experiment, the number of data points N = 500, and the
block size B was set to 100.

was used to obtain the number of hypotheses M = 400. This is because we are not compensating

for noise in the minimal sample, and the resulting inlier counts are consequently lower than the

theoretically expected number. It can also be seen that as the inlier ratio drops below " = 0.50, the

performance of preemptive RANSAC starts to su↵er, in terms of fraction of inliers returned. This

is due to the fact that for these low inlier ratios, preemptive RANSAC does not evaluate a su�cient

number of hypotheses, and thus an incorrect solution, with lower inlier count, is invariably returned.

This is further illustrated in Figure 3.9(b), which shows the number of runs, out of 500, for which

preemptive RANSAC returned at least 50% of the inliers in the input dataset. It can be seen that

the accuracy of preemptive RANSAC drops o↵ rapidly and, particularly for lower inlier ratios,

often fails completely. This highlights the limitation of preemptive RANSAC discussed in Section

3.3: when the true inlier ratio in the data deviates from the strict assumption made in preemptive

RANSAC, it often significantly impacts the accuracy of the system.

From the point of view of e�ciency, Figure 3.10 compares the number of hypotheses retained

at each stage of preemption for preemptive RANSAC, as compared to ARRSAC. These results

correspond to the same synthetic fundamental matrix estimation problem as above, with N = 500

correspondences and a block size of B = 100. The graph shows the number of hypotheses retained

(y-axis) following each round of evaluation (x-axis). Note that for this experiment, it was assumed

that a PROSAC-based ordering of the hypotheses was unavailable, and thus the sampling in both

cases is performed uniformly at random. It can be seen that even without PROSAC, the partially
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depth-first evaluation strategy used in ARRSAC causes an appreciable decrease in the number of

hypotheses evaluated at each stage. In particular, note that the number of hypotheses for each round

in preemptive RANSAC is fixed; this corresponds to the fixed preemption function in Equation

3.20. On the other hand, due to the fact that bad hypotheses are discarded early on in ARRSAC, the

number of good hypotheses that survive is considerably lower as compared to preemptive RANSAC.

Thus, the preemption function in ARRSAC is able to adapt to the data, and always remains below

that of equation 3.20, providing considerable computational savings.

Finally, we provide an evaluation of ARRSAC on real test data, comparing its performance

against other robust estimators. A sample of the test images chosen for this experiment are shown

in Table 3.3.3, and were selected to cover a range of inlier ratios and number of correspondences.

As in Section 3.2.7, corresponding features in the image pairs were detected using SIFT matching,

and the ratio scores were used to sort feature matches based on quality. The maximum number of

hypotheses was held fixed to 500 for both preemptive RANSAC and ARRSAC. Table 3.3.3 lists the

summary statistics for five methods: baseline RANSAC, SPRT, PROSAC, preemptive RANSAC

and ARRSAC. While the first three columns are listed for comparison against traditional RANSAC

approaches, note that only the last two columns are directly comparable, since preemptive RANSAC

and ARRSAC are the two methods that are intended for real-time applications, which is the focus

of this work.

A few important trends are noticeable from the table. Firstly, for images with higher inlier

ratios (A–C), it can be observed that both preemptive RANSAC and ARRSAC deliver solutions

that are comparable in terms of the number of inliers returned. In particular, preemptive RANSAC

returns more inliers on average than baseline RANSAC, since it evaluates many more hypotheses

than necessary. However, this comes at a higher computational cost; for these scenarios, preemptive

RANSAC in fact operates slower than standard RANSAC (refer ‘spd-up’ in Table 3.3.3). On the

other hand, ARRSAC is able to e�ciently estimate the inlier ratio and accordingly limit the number

of hypotheses, producing a considerable speed-up while retaining quality. Secondly, for images

with low inlier ratios (D–F), preemptive RANSAC is often unable to find the correct solution since it

evaluates too few hypotheses. In contrast, the non-uniform hypothesis generation step in ARRSAC

enables accurate estimation of the epipolar geometry even for very low inlier ratios. In addition,

70



RANSAC SPRT PROSAC Preemptive ARRSAC

A : " = 0.72,N = 713 I 485±21 486±21 364±73 510±15 512±8
k 76 78 8 500 22

vpm 713.0 67.2 713.0 198.9 210.6
time (ms) 6.9 2.2 0.8 17.3 0.6

spd-up 1.0 3.2 8.8 0.4 11.2

B : " = 0.67,N = 735 I 498±22 492±21 349±73 492±21 495±11
k 86 99 9 500 28

vpm 735.0 77.8 735.0 199.0 204.6
time (ms) 10.4 3.7 1.4 17.3 0.9

spd-up 1.0 2.8 7.3 0.6 10.8

C : " = 0.57,N = 575 I 315±12 316±11 115±13 324±7 326±5
k 371 385 7 500 27

vpm 575.0 11.5 575.0 196.0 204.8
time (ms) 15.5 4.4 1.4 17.2 0.8

spd-up 1.0 3.5 11.1 0.9 20.4

D : " = 0.38,N = 1088 I 381±13 381±12 325±16 217±61 403±10
k 7935 8403 14 500 48

vpm 1088.0 22.6 1088.0 200.0 208.7
time (ms) 546.53 108.77 5.41 17.3 3.74

spd-up 1.0 3.2 8.8 31.6 147.7
E : " = 0.38,N = 422 I 141±6 141±5 137±5 112±26 152±8

k 12218 12776 498 500 161
vpm 422.0 15.0 422.0 189.0 204.2

time (ms) 391.62 160.47 25.58 17.3 9.79
spd-up 1.0 2.8 7.3 22.6 39.9

F : " = 0.45,N = 904 I 388±10 388±11 311±33 301±55 400±8
k 1885 1956 23 500 56

vpm 904.0 15.7 904.0 199.8 187.6
time 111.37 24.55 2.57 17.3 5.12

spd-up 1.0 3.5 11.1 6.4 21.8

Table 3.7: Evaluation results for real image pairs. The real-time approaches, preemptive RANSAC
and ARRSAC, are listed in the last two columns. The table lists the number of inliers returned
(I), number of models evaluated (k), the number of verifications per model (vpm), along with the
runtime (in milliseconds), and the speed-up (spd-up) compared to standard RANSAC. It can be
observed from the above results that the ARRSAC approach produces significant computational
speed-ups, while simultaneously providing accurate robust estimation in real-time. Note that the
number of hypotheses evaluated by ARRSAC is always less than preemptive RANSAC. In addition,
the correct epipolar geometry is always recovered.

the e�cient preemption strategy employed ensures that even for these cases of low inlier ratios,

the overall runtime is still well below the real-time budget. The results in Table 3.3.3 highlight the

fact that ARRSAC is able to elegantly adapt to the data and ensure accurate robust estimation over a

wide range of inlier ratios, and is thus suitable for challenging real-time robust estimation scenarios.
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3.3.4 Summary

In this section, we presented an algorithm for real-time robust estimation. In particular, ARRSAC

can be viewed as a special case of USAC (Section 3.2), with various optmizations made to adapt

the algorithm for real-time applications.In particular, while traditional robust estimation approaches

place no hard limit on the number of hypotheses, real-time estimators limit this number based on the

desired running time. The approach we present leverages state of the art techniques: non-uniform

sampling, local optimization and depth- and breadth-first preemptive approaches in order to achieve

high performance. While our results are promising, note that unlike RANSAC and the other variants

discussed in Section 3.2, neither preemptive RANSAC nor ARRSAC guarantee that the correct

solution will be returned in the worst case. As noted in Section 3.3, in real-time systems, the

goal is to obtain the best solution given the time constraints. While preemptive RANSAC achieves

this goal under certain conditions, our aim in ARRSAC is, in some sense, to extend the range of

operating conditions across which this goal is achieved. Thus, while preemptive RANSAC makes

several strict assumptions about the data, ARRSAC relaxes these assumptions, and is consequently

applicable in a wider range of more challenging scenarios.

3.4 Large Scale Applications

As mentioned in Chapter 1, one of the motivating applications for the algorithms developed in this

dissertation is that of large-scale structure from motion. To this end, both the algorithms introduced

in this chapter – USAC and ARRSAC – have been implemented and used in large-scale 3D recon-

struction systems. In these systems, robust estimators are employed most commonly to perform the

task of geometric verification: in other words, given a set of tentative feature matches between a

pair of images, the goal is to compute the corresponding epipolar geometry (if any) between the

two images. This is a fundamental component of any real-world system that seeks to model large-

scale imagery either in the form of video sequences (Nister et al., 2004; Malis and Marchand, 2006;

Pollefeys et al., 2008; Clipp et al., 2010) or photographs gathered from the internet (Snavely et al.,

2008; Agarwal et al., 2009; Frahm et al., 2010; Raguram et al., 2011).
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3.4.1 Real-Time Robust Estimation with ARRSAC

In the context of video, ARRSAC has been integrated into the UrbanScape real-time structure from

motion system described in (Pollefeys et al., 2008). In this system, ARRSAC is used for 5-point

(Nistér, 2004) and 3-point (Haralick et al., 1994) pose estimation, and operates at 100+ Hz on aver-

age. In the context of internet photo collections, ARRSAC has also been employed in (Frahm et al.,

2010; Raguram et al., 2011), whose focus is in the modeling and organization of landmark image

collections. In particular, the goal in (Frahm et al., 2010) is to “build Rome on a cloudless day” –

i.e., to reconstruct 3D models of Rome on on a single PC (as opposed to a cluster of computers),

within the span of a day. Thus, this is again a scenario with a fixed time budget, making ARRSAC a

good candidate for robust estimation. In this system, ARRSAC is used primarily for 7-point epipo-

lar geometry estimation and achieves speeds of 450+ Hz, when implemented in a multi-threaded

application across 8 CPU cores.

3.4.2 Improved Geometric Verification with USAC

Most recently, we have investigated the use of USAC for processing large-scale internet photo col-

lections, with a focus on finding a better strategy to weight feature matches based on their quality

(Raguram et al., 2012b). As the results in Sections 3.2.7 and 3.3.3 indicate, taking prior informa-

tion into account can often significantly improve the overall computational e�ciency of the robust

estimator. It is worth noting, however, that thus far, virtually the only kind of ordering information

that has been used in PROSAC has been purely image-to-image (Chum and Matas, 2005; Raguram

et al., 2008; Sattler et al., 2009; Ni et al., 2009). Note that this kind of ordering does not leverage

any information that might have been obtained from prior matching rounds – in other words, each

pair of images is verified completely independently of the others. Particularly for the case of photo

collections, where images of the same 3D scenes are repeatedly encountered, there is much to be

gained by altering the ordering scheme to take prior matching results into account.

3.4.2.1 Related Work

Thus far, the typical way to perform geometric verification in image collections (Snavely et al.,

2008; Agarwal et al., 2009; Chum and Matas, 2010a; Frahm et al., 2010; Philbin et al., 2011) has
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been to estimate the geometric relationship between image pairs independently. Our main idea in

this work is simple: as the geometric verification progresses, we learn information about the image

collection, and subsequently use this learned information to improve e�ciency. More specifically,

since images of the same geometric structures are being repeatedly verified against each other, this

process of repeated matching reveals useful information about the stability and validity of low-level

image features. While current techniques either ignore this information, or leverage it for other tasks

via an o✏ine processing stage, we feed this information directly back into the verification pipeline.

Relevant to our approach are techniques for the related problems of location recognition and

image retrieval, where the goal is to e�ciently identify and return images that are geometrically

related to a given query image. Given that e�ciency and accuracy are important in this setting,

a number of recent approaches have addressed the problem of learning how to select informative

image features – or, alternatively, how to suppress uninformative features (Li et al., 2010; Turcot

and Lowe, 2009; Naikal et al., 2011; Sattler et al., 2011; Knopp et al., 2010). Also closely related

is the work of (Mikulı́k et al., 2010), which uses the output of geometric verification to learn a

probabilistic similarity measure between visual words, thus linking together words that are likely to

be related. While similar in spirit to our idea, our goal is quite di↵erent – our aim is to fully utilize

this information in an online way. This is a distinguishing characteristic from current techniques

that have thus far obtained this information via an o✏ine, preprocessing step, or through a post-

hoc phase that uses the output of structure-from-motion. In addition, in contrast to techniques

such as (Li et al., 2010; Turcot and Lowe, 2009; Knopp et al., 2010), which operate at the feature

level (i.e., using the results of exhaustive geometric verification to either prioritize or prune image

features for every image in the dataset), our approach explores the weighting of visual words. In this

respect, our approach is similar to that of (Naikal et al., 2011), which uses an o✏ine training stage to

identify a subset of the visual vocabulary that contains information that is most useful for landmark

identification. However, in contrast, we do not require a dedicated learning stage or labeled training

data; our system incrementally learns as it processes new image pairs.

3.4.2.2 Approach

Identifying useful visual words
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(a) (b)
Figure 3.11: (a) All detected features for a single image (b) Features filtered based on the results of
geometric verification – only visual words that were inliers in at least 10 previous image pairs are
shown. The features in (b) are heatmap colour coded based on the inlier counts. (Figure best viewed
in colour).

As a motivating example, consider Figure 3.11(a), which shows all detected SIFT features for a

single image. Note that a large number of features lie in areas of the image that are very unlikely

to pass any geometric consistency check (for e.g., features on vegetation, people, and in the sky).

Now, if we have previously verified other images of the same scene, we can weight each visual

word in the current image by the number of times that the word has previously passed the geometric

consistency check in other image pairs (see Figure 3.11(b)). Note, in particular, that this weighting

emphasizes visual words that are stable, reliable, and more likely to be geometrically consistent

(for instance, those in the central portion of the structure), while also suppressing spurious visual

words. Similar ideas have been explored to some extent in recent work (Knopp et al., 2010; Turcot

and Lowe, 2009), but at the feature-level. Our approach extends this idea in two ways: (1) similar

to (Mikulı́k et al., 2010) we work at the visual word level, which in turn allows us to predict, for a

never before seen image, which feature matches are likely to be geometrically consistent, and (2)

since our goal is geometric verification, we incorporate this visual word prioritization strategy into

the verification step itself (i.e., no preprocessing or labeling of images is required).

Computing visual word priorities

In the interests of computational e�ciency, we adopt a very simple strategy to identify potentially

useful visual words. Consider a visual vocabulary, W = {w1,w2, ...,wN}, consisting of N visual
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words. Typically, this vocabulary is generated by (approximate) k-means clustering, using a diverse

set of image descriptors (Philbin et al., 2007). In addition, consider a set of visual word priorities,

C = {c1, c2, ..., cN}, where each ci represents a score that is proportional to the validity of the visual

word. In the absence of any prior information, we start by assigning each of these visual words the

same priority (i.e., ci = 0,8i). We then carry out geometric verification on the image collection,

selecting image pairs using either a retrieval-based method as in (Agarwal et al., 2009; Chum and

Matas, 2010a), or a clustering based-method as in (Frahm et al., 2010). For each pair of selected

images, we match SIFT features, and then run a robust estimator to identify a set of inliers.

Each pair of matching features is associated with a visual word from the set W (for simplicity,

we ignore for now the case where a pair of matched features gets assigned to di↵erent visual words

in each image; we will return to this point later). For every pair of images that we successfully verify

(where a “success” is considered to be a pair of images with > Imin inliers; commonly chosen values

of Imin range between 15-20), we then update the priority of the inlier visual words based on the

results of this process. The simplest possible scheme would consider the set C to be a set of inlier

counts – in other words, for each feature match that was found to be an inlier, we update a count ci

for the corresponding visual word. In the case where the matched points are assigned to di↵erent

words, we simply update the counts for both visual words. Intuitively, over time, we expect that

these counts will help identify visual words that are frequently matched as inliers, as well as words

that repeatedly fail the geometric consistency check. Note that the set C is maintained globally and

is used across all image pairs.

Improving USAC sampling

Assume we are given a set of counts C = {c1, c2, ..., cN}, obtained by matching a set of image pairs.

This weighting of visual words can then easily be incorporated into USAC in order to bias the

sampling in favour of the more reliable words. In particular, given a pair of images, consider a set

S containing N matched features. For each matched feature in S, we have a corresponding visual

word wi, with associated count ci. We simply order the matches in S based on the counts ci, and

then run USAC as before.
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3.4.2.3 Results

We first evaluate the e↵ect of the modified ordering scheme based on visual words counts on the ro-

bust estimation stage. We report results on two experiments, representing di↵erent usage scenarios:

Experiment 1: We consider a dataset of 10000 images representing a single landmark (downloaded

by doing a keyword search for “Berlin Dome” on Flickr). This dataset is relatively clean, though a

small fraction (⇡ 5%) of unrelated images are present in the dataset. We process this dataset using

the approach of (Agarwal et al., 2009), by retrieving 20 match candidates for each image in the

dataset, and performing geometric verification. We compare the performance of three estimators:

(a) baseline RANSAC (denoted as R1) (b) USAC with ordering based on SIFT matching scores

(R2) and (c) USAC with the proposed ordering based on visual words (R3). The only di↵erence be-

tween R2 and R3 is in the ordering used to prioritize matches. In all cases, we estimate the epipolar

geometry using the 7-point algorithm. For this experiment, we use a visual vocabulary with 20, 000

words, computed by k-means clustering using a set of randomly chosen descriptors from the dataset.

Experiment 2: In this experiment, we process a much larger dataset, consisting of 2.77 million im-

ages of Berlin, also used in (Frahm et al., 2010). To handle datasets of this magnitude, we use the

clustering based approach described in (Frahm et al., 2010), which is capable of scaling well to these

larger datasets. We extract binarized gist features for each image, and then cluster using k-medoids

with k = 100000 centers. We then perform geometric verification independently on each cluster, by

first trying to identify a set of m (=3, in our experiments) consistent images in each cluster, denoting

the image with the most inliers as the “iconic”. We then register all remaining images in the cluster

to this iconic. Compared to the approach used for Experiment 1, this strategy dramatically reduces

the total number of pairwise image verifications that need to be performed (Frahm et al., 2010). For

this experiment, we compare the performance of R2 and R3, since RANSAC (R1) is impractical

for datasets of this size. In this case, we use a larger vocabulary with 106 visual words, computed

using approximate k-means clustering (Philbin et al., 2007).

In all cases, note that there is no dedicated “training” phase for R3. Initially, we start with all

visual word priorities set to zero, and then progressively accumulate inlier counts. As the matching

progresses, the e�ciency of R3 increases rapidly, and after verifying about 500 pairs on average,

it becomes more e�cient than the matching score based ordering. This is an empirical observation

77



Table 3.8: Experiment 1 (BerlinDome-10k)
R1 R2 R3

Mean time per 389.6 41.2 28.9
image pair (ms)

Mean # of hypotheses 14218.4 604.1 399.7
per image pair
Total runtime 23:48 04:08 03:16

(hours:minutes)

Table 3.9: Experiment 2 (Berlin-2.77M)
R2 R3

Mean time 26.7 18.8
per image pair (ms)

Total runtime 02:50 02:28
(hours:minutes)

# iconics 9841 9912
# registered images 132,719 133,830

at this stage, and investigating this progression in more detail is an interesting direction for future

work. In the results we report, for method R3, we start by using the matching score based ordering,

and then switch over to the visual word based ordering after 500 image pairs. The results for

the two experiments are shown in Tables 1 and 2. For the smaller BerlinDome-10k dataset, it

can be seen that the new ordering scheme improves on the runtime of the matching score based

ordering by about 30%. This provides strong evidence that using information accumulated during

the matching process helps improve e�ciency. For Expt. 1, we do not distribute our processing

across multiple CPU/GPU cores; thus, the reported total runtime is for a single thread. For the

large-scale Berlin-2.77M dataset, much the same trend holds for the per-image pair estimation time,

which indicates that the weighting based on visual words is still reliable even with the presence of

multiple landmarks in the dataset. It can be seen that the mean time to verify a single image pair is

reduced compared to the results in Table 1; this is a consequence of the viewpoint-based clustering

which increases the mean inlier ratio by grouping similar images in the same cluster. Finally, the

overall runtime numbers reported in Table 2 are for a parallel implementation that distributes image

pairs across 16 CPU threads for geometric verification. Note that the overall runtimes are not

directly comparable between Tables 1 and 2, since these use two di↵erent strategies (Agarwal et al.,

2009; Frahm et al., 2010) to perform the verification.

A specific example is shown in Figure 3.12(a).The inlier ratio for this image pair is significantly

low (⇡ 20%), due to large changes in viewpoint and scale, coupled with repetitive patterns and

symmetries. For this low inlier ratio, standard RANSAC requires close to 1.07⇥106 samples, which

is computationally prohibitive. USAC with feature matching scores requires about 22000 samples,

while USAC with visual word ordering takes 595 samples, which represents a 36x improvement

compared to ordering using matching scores.
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(a) (b)
Figure 3.12: (a) Putative features matches and (b) inliers. In this case, the inlier ratio is ⇡ 20%.

3.4.3 Summary

In this section, we have presented a simple technique for taking advantage of the information gen-

erated during geometric verification, to improve the e�ciency of the robust estimation stage. We

show that reliable statistics can be computed on the visual-word level and used to guide the sam-

pling process. Our approach thus integrates online knowledge extraction seamlessly into structure-

from-motion systems, and is particularly relevant for large-scale image collections. While this is a

promising first step, there are interesting directions for furture work. In particular, while we cur-

rently use the visual word weights only to guide sampling, it might be possible to integrate this kind

of learned information into the matching stage as well. For instance, the work of (Mikulı́k et al.,

2010) describes a way to use the output of geometric verification to link together words that are

likely to be related. Incorporating this typed of learned information into the feature matching stage

could further improve the e�ciency of the overall geometric verification process.

3.5 Discussion

In this chapter, we introduced two algorithms for robust estimation, USAC and ARRSAC. The

common thread linking these two algorithms is that they represent a synthesis of state of the art

RANSAC techniques. By combining various ideas from the literature, these methods achieve both

high performance as well as robustness, and represent the state of the art in robust estimation. Both

these algorithms have been integrated into 3D reconstruction systems, and have enabled real-time

operation as well as the processing of very large scale datasets.

As a secondary contribution, we have developed a stand-alone C++ library that implements the

USAC framework using state of the art algorithms for each stage (USAC-1.0). This library provides
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state of the art performance and we plan to make it freely available to the community. The library

can be used as a stand-alone robust estimator that can be plugged-in for use in specific applications;

as a benchmark against which to compare various robust estimators; and as an easily extendible

base for developing new algorithms, for others to use and to build upon.
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Chapter 4

Exploiting Uncertainty in Random
Sample Consensus

4.1 Introduction

In this chapter, we turn our attention to the standard RANSAC stopping criterion (Section 2.2.3),

and look more closely at the assumptions therein. As we have seen in the previous chapter, in its

standard formulation, RANSAC operates in a simple hypothesize and verify loop, relying on the

fact that with enough iterations, a “good” sample (i.e., a minimal subset that is free from outliers)

will eventually be drawn, resulting in a model that has largest support. Since it is computationally

infeasible to try every possible minimal subset, the standard termination criterion in RANSAC (see

Equation 2.4) determines the number of trials required to ensure with some confidence ⌘0, that at

least one minimal subset is drawn which is free from outliers.

The implicit assumption in the above formulation is that a model produced from an all-inlier

minimal subset will be consistent with all other inliers in the data. In practice, this assumption is

often violated, due to the e↵ects of noise. To illustrate this with an example, consider Figure 4.1(a),

which shows a subset of the putative feature matches for a pair of images of a planar scene. We

can run RANSAC to estimate a 2D homography from this set of putative matches. The results for a

complete execution of the RANSAC algorithm are shown in Figure 4.1(b), which plots the number

of inliers (y-axis) corresponding to each model hypothesis generated during the RANSAC exection
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Figure 4.1: (a) Subset of matched SIFT features for a pair of images (b) Results of a single execution
of RANSAC using the putative features from (a). The graph plots the number of inliers (y-axis)
corresponding to each model hypothesis generated during the RANSAC exection (x-axis).

(x-axis). It can be seen from the graph that there are a few samples that obtain high inlier counts,

while the majority of samples result in only a few inliers. We can focus our attention on these high-

inlier hypotheses, and look more closely at the minimal samples that correspond to these. This is

illustrated in Figure 4.2, which highlights the eight hypotheses whose support is significantly larger

than the rest (labels ∂–Ω). Figure 4.2 also shows the minimal samples corresponding to these model

hypotheses. The main observation to be made from inspecting these minimal samples is that each

of these is an all-inlier minimal sample – in other words, each is a sample that should have gathered

all other inliers, but failed to do so.

This e↵ect has been observed previously in the robust estimation literature (Tordo↵ and Murray,

2002; Chum et al., 2003). Indeed, as discussed in Section 3.2.5, the presence of noise in the data,

coupled with the use of minimal samples, implies that the estimated model parameters are also

a↵ected by noise. In addition to a reduction in accuracy, another consequence of the decreased
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Figure 4.2: Top: Graph of inlier counts corresponding to the various model hypotheses generated
during a RANSAC execution. Bottom: Minimal samples corresponding to the hypotheses labeled
∂–Ω in the graph.

support of these models is that the number of samples drawn in RANSAC typically increases by

a factor of two to three compared to the theoretically expected number. Going further, we have

observed previously (see Section 2.2.3) that all-inlier minimal subsets are sampled multiple times

in RANSAC before the algorithm terminates. In particular, to achieve a 95% confidence in the

solution, approximately three all-inlier samples are drawn by RANSAC . These two observations

explain the presence of the multiple peaks in Figures 4.1 and 4.2 – simply put, RANSAC generates

multiple all-inlier samples, each of which has reduced support due to the e↵ects of noise.

Our goal in this chapter is to address these issues, by quantifying the e↵ects of noise on the

model parameters. More specifically, we introduce a new framework for robust estimation, which

addresses some of the issues mentioned above, by explicitly characterizing the uncertainty of the

models hypothesized in the estimation procedure in terms of their covariance. This uncertainty

arises from imprecise localization of the data points from which the model is computed, as well as
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from their spatial distribution. We show that by explicitly accounting for these uncertainties, it is

possible to account for the e↵ects of noise in the data. In other words, we show that knowledge of

the uncertainties can be leveraged to develop an inlier classification scheme that is dependent on

the model uncertainty, as opposed to a fixed threshold. This strategy has the advantage that, given

a model with associated uncertainty, we can immediately identify a set of points that support this

solution, if the imperfect model estimation were taken into account. We then also demonstrate how

the standard RANSAC stopping criterion can be altered to take this into account, thus achieving a

reduction in the total number of samples required.

4.2 Related Work

The Locally Optimized RANSAC algorithm (Chum et al., 2003), discussed in Section 3.2.5, was

the first approach that addressed the e↵ects of noise in RANSAC. To recap: given a hypothesis with

the largest support so far, LO-RANSAC performs an “inner RANSAC” loop, where non-minimal

subsets are sampled from within the support of the current best solution, thus resulting in more

accurate parameter estimates. The RANSAC algorithm then resumes sampling on all data points,

carrying out the local optimization step every time a hypothesis with better support is found. The

e↵ect of the local optimization step is to mitigate the e↵ects of noisy data points by using non-

minimal subsets to generate hypotheses. Since this typically results in an increase in the support,

the net e↵ect is that the overall number of iterations required by the algorithm moves closer to

the theoretically predicted number. Our approach in this work extends the LO-RANSAC idea by

explicitly modeling the e↵ect of noise on the model parameters. Thus, while LO-RANSAC focuses

on the e↵ect of noise (reduced support), we focus on the cause (uncertainty in model parameters).

The two approaches are also, in some sense, complementary; in particular, the uncertainty analysis

we develop helps in determining a set of inliers, and we can perform local optimization in order

to refine this solution. In addition, our method improves upon LO-RANSAC by using a di↵erent

criterion to determine when to stop sampling. In practice, this results in a reduction in the number

of samples required.

There exists a wide body of work in photogrammetry and computer vision that deals with error

analysis and propagation with respect to image measurements. A survey of this literature can be
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found in (Hartley and Zisserman, 2000; McGlone, 2004), with more specific applications in (Har-

alick, 1994; Meidow et al., 2009a). We build on this foundation, but restrict our attention to some

common geometric entities that are often encounted in computer vision – namely, the homography

and the fundmental matrix. Uncertainty analysis for these two entities has been developed in the

literature (Csurka et al., 1997; Criminisi et al., 1999; Sur et al., 2008), and our main contribution in

this work is to leverage these techniques within the context of robust estimation. Similar ideas have

been used (Ochoa and Belongie, 2006) to perform guided matching using point covariances. While

similar in spirit to our approach, we aim to integrate this step into a RANSAC algorithm in order to

improve accuracy and e�ciency.

4.3 Uncertainty Analysis

As noted in Section 4.2, there exists a wide body of work in photogrammetry and computer vision

that deals with error analysis and uncertainty estimation. In this work, we restrict our attention to

some common geometric entities in order to specifically demonstrate how knowledge of uncertain-

ties may be integrated into a random sampling framework. Before describing the proposed robust

estimation algorithm, we first provide a discussion of uncertainty analysis as applied to the estima-

tion of two common geometric relations, the homography and fundamental matrix, and show how

point uncertainties are transformed under the covariance of an estimated relation. The discussion in

this section refers mainly to (Criminisi et al., 1999) and (Sur et al., 2008); the former develops the

theory behind characterizing the uncertainty for homography estimation in terms of its covariance,

while the latter deals with fundamental matrix estimation.

4.3.1 Uncertainty for homography estimation

Given a set of corresponding points xi $ x0i , where xi and x0i are in ê2, the 2D homography H is the

3 ⇥ 3 projective transformation that takes each xi to x0i . Since each point correspondence provides

two independent equations in the elements of the matrix H, a total of four corresponding points are

required to compute H up to scale.

Expressing xi and x0i in terms of homogeneous 3-vectors, the pair of equations for correspon-

dence i is given by:
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T and h is the 9-vector made up of the entries of the matrix H. By stacking

the equations corresponding to four point correspondences, we then obtain a set of equations Ah =

0, where A is an 8 ⇥ 9 matrix. The Direct Linear Transformation (DLT) algorithm (Hartley and

Zisserman, 2000) for determining the solution then involves computing the nullspace of A using

the SVD. The unit singular vector corresponding to the smallest singular value is the solution h (up

to scale). In practice, the correspondences xi $ x0i used in the computation of the homography

are imperfectly localized in each image (for simplicity, we ignore for now the issue of outliers).

It is common to consider the data points as having errors modeled by a homogeneous, isotropic

Gaussian noise process with known variance �. Note that the standard RANSAC algorithm also

uses an estimate of this quantity to set the threshold for inlier classification (see Equation 2.7). Note

that while we do make the simplifying assumption of a common, isotropic covariance matrix for

every point, as discussed in (Kanatani, 2004), this is a reasonable assumption to make in practice.

Assuming that the points in each image are perturbed by Gaussian noise, these errors in position

cause uncertainty in the estimated transformation. This uncertainty can be characterized in terms

of a 9 ⇥ 9 matrix representing the covariance of the transformation. In general, this covariance

matrix depends on the error in point locations, the spatial distribution of the points used to compute

the transformation, and the method of estimation. In (Criminisi et al., 1999), it was shown that the

covariance matrix ⇤h can be computed as

⇤h = JSJ, (4.1)

where J = �P9
k=2 ukuT

k /�k, with uk representing the kth eigenvector of the matrix AT A and �k the

corresponding eigenvalue. S is a 9 ⇥ 9 matrix with a closed-form expression. We refer the reader to

(Weng et al., 1989; Criminisi et al., 1999) for details on the derivation and the coe�cients of S.

In standard RANSAC, which ignores this uncertainty in the estimated transformation, the com-

puted homography is used to determine the error for each data point. One common measure when
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computing the homography is the symmetric transfer error, given by

d? = d(x0i ,Hxi)2 + d(xi,H�1x0i)
2, (4.2)

where H and H�1 represent forward and backward transformations, respectively. For a pair of

matched points xi $ x0i , if the computed error from Equation 4.2 is below a predefined threshold

t, then that correspondence is classified as an inlier. As noted in Section 2.2.4, if we make the

assumption that the point-model errors correspond to a sum of n squared Gaussian variables (where

n is the codimension of the model), then the value of the threshold t can be computed as

t2 = ��1
n (↵)�2, (4.3)

where � is the cumulative chi-square distribution. In this setting, t represents the value of the

threshold that captures a fraction ↵ of the set of inliers; this is typically set to 0.95. However, note

that this derivation ignores the fact that the estimated model parameters are also a↵ected by noise.

Consequently, if Equation 4.3 is used to compute a fixed threshold t, for use in RANSAC, this

threshold will not strictly capture a fraction ↵ of the inliers. This is the reason for the reduced inlier

counts seen in Figures 4.1 and 4.2.

In order to determine the e↵ect that the uncertainty of the transform has on point transfer, we

consider the forward transformation x̂0i = Hxi (the formulation is symmetric in the reverse di-

rection). Given a computed homography H and its covariance, as estimated from Equation 4.1,

consider a pair of matched features x$ x0 which were not used in the computation of H. Given the

(assumed) 3 ⇥ 3 covariance matrix ⇤x for point x, note that the covariance of the transferred point

x̂0 may no longer be an isotropic Gaussian distribution, due to the uncertainty in H. In particular, it

can be shown (Criminisi et al., 1999) that the uncertainty in the transferred point is given by

⇤x̂0 = B⇤hB +H⇤xH (4.4)

where B is the 3 ⇥ 9 matrix
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Figure 4.3: Using the covariance matrix of the estimated homography in point transfer.
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The first term in equation (4.4) represents the uncertainty in x̂0 given an exact point x and uncertain

H. The second term represents the uncertainty given an exact H and uncertain point measurement x.

The 3⇥3 matrix⇤x̂0 thus defines a covariance ellipse that represents the uncertainty in point transfer

due to both uncertainty in point measurement as well as uncertainty in the estimated homography.

This result is illustrated in Figure 4.3, where a homography H is computed from a set of four

point correspondences (denoted by the red circles), along with its associated covariance matrix ⇤h.

This covariance matrix is then used to transfer the uncertainty of another point (denoted by the

green circle) from the left image into the right. It can be observed that the uncertainty of the trans-

ferred point is now represented in terms of an ellipse, which represents a level set of the probability

density function describing the noise spread around the ellipse centre. Since the measured point

in the right image and the uncertainty region of the transformed point overlap, this implies that by

accounting for the various uncertainties, this correspondence can be explained as a true match. Note

that in this case, we do not use a fixed threshold t for computing the support over all points, as in

RANSAC. Rather, as shown in Equation 4.4, both the uncertainty of the transformation as well as

the uncertainty of the point are taken into account when making this decision.
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4.3.2 Uncertainty for fundamental matrix estimation

Given a set of corresponding points xi $ x0i , the fundamental matrix F is the 3 ⇥ 3 matrix that

satisfies x0Ti Fxi = 0. Each correspondence provides one linear equation in the entries of F. Since

F is defined up to a scale factor, a simple linear solution may be found from 8 point matches. In

fact, by enforcing the rank constraint, F may be computed from 7 point matches. Due to the relative

simplicity of the linear 8-point algorithm in terms of the discussion of its uncertainty analysis, we

focus on this algorithm in the presented work. Thus, given 8 point correspondences, an appropriately

normalized (Hartley, 1997b) matrix M may be constructed, where

M =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

x01x1 x01y1 x01 y01x1 y01y1 y01 x1 y1 1

x02x2 x02y2 x02 y02x2 y02y2 y02 x2 y2 1

. . . . . . . . .

. . . . . . . . .

x0nxn x0nyn x0n y0nxn y0nyn y0n xn yn 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Solving Mf = 0, where f is a 9-vector made up of the entries of F, followed by rank 2 constraint

enforcement, then provides the solution.

The uncertainty analysis for the 8-point algorithm was developed in (Csurka et al., 1997; Sur

et al., 2008). Given the measurement noise in the pixel coordinates, the goal is to characterize the

uncertainty of F in terms of its covariance matrix ⇤F. If we denote the solution to the linear system

of equations as f̃, the covariance of f̃ can be shown to be:

⌃f̃ = �
2JXJT

X (4.5)

where JX is an 8⇥32 matrix that represents the Jacobian of the transformation that generates f̃ from

the vector of point matches X, and � is the standard deviation of the noise in point measurements.

The rank 2 constraint is then enforced by computing

F = UD

0
BBBBBBBBBBBBBBBBBB@

1 0 0

0 1 0

0 0 0

1
CCCCCCCCCCCCCCCCCCA

VT
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Figure 4.4: Using the covariance matrix of the estimated fundamental matrix in point transfer.

where U, D and V are obtained from the singular value decomposition F̃ = UDVT . An e�cient

method for computing the Jacobian of the SVD is described in (Papadopoulo and Lourakis, 2000),

and can be used to compute the 9 ⇥ 9 Jacobian matrix JS VD. The final covariance matrix for F is

then obtained as

⌃F = JS VD

0
BBBBBBBBB@
⌃f̃ 08,1

01,8 0

1
CCCCCCCCCA

JT
S VD

Along the lines of the discussion in Section 4.3.1, the uncertainty of the transform may be used

to map the covariance ellipse of a point in one image into the other. However, since the fundamental

matrix defines a point-line mapping, the interpretation of this uncertainty is now altered. Specifi-

cally, given the fundamental matrix F and point x, we have the epipolar line l = Fx corresponding

to x. The uncertainty of this line is represented in terms of a covariance matrix

⌃l = JF⌃FJT
F + �

2JxJx (4.6)

where JF and Jx are the Jacobian of the point-line mapping with respect to F and x. This covariance

matrix defines a conic Ck, which corresponds to a hyperbola in the second image, illustrated in

Figure 4.4. As in the case of the homography, the validity of a match can be determined in terms of

whether the point x0 lies within the mapped uncertainty area.
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4.4 Incorporating uncertainty into RANSAC

Given the analysis described in the previous section, we now discuss how knowledge of the uncer-

tainty of the estimation may be leveraged in RANSAC to obtain a more e�cient algorithm.

4.4.1 Computing (uncertain) support:

The discussion in Sections 4.3.1 and 4.3.2 introduced the idea of characterizing the uncertainty of

the estimated transformations, and indicated the advantage of using this uncertainty when com-

puting the support, as compared to a fixed, precomputed threshold. To make this intuition more

rigorous, we note that this uncertainty analysis has a simple probabilistic interpretation – in partic-

ular, in terms of the Mahalanobis distance (Mahalanobis, 1936).

As an example, consider the case of homography estimation, where we are given a set of

matched points xi $ x0i , and are required to compute the homography H. Given our noise model, a

point x in the first image is denoted as having mean x and covariance matrix ⇤x. The corresponding

point x0 is similarly denoted as having mean x0 and covariance matrix ⇤0x. As in Section 4.3.1, we

can transfer the point from the first image to the second image via the estimated homography, in

order to obtain the point x̂0 = Hx.

It can be seen that x̂0 is a point with mean Hx and covariance matrix ⇤x̂0 , as defined in Equation

4.4. If we make the assumption that x0 = Hx, then it can be seen that the quantity x0 �Hx, i.e., the

distance between the detected point x0 and the transferred point Hx, is a random variable with zero

mean, and covariance matrix ⇤x + ⇤x̂0 . Defining e = x0 � Hx, this can be written in terms of the

Mahalanobis distance dM:

dM(e) =
⇣
eT (⇤x + ⇤x̂0)�1e

⌘ 1
2 , (4.7)

which provides a measure of distance between the points, taking the various uncertainties into ac-

count. Given equation 4.7, and assuming that the random variabes are Gaussian, the squared Ma-

halanobis distance follows a chi-square distribution. It thus follows, much like in RANSAC, that a

fixed fraction ↵ of inliers will satisfy the condition

eT (⇤x + ⇤x̂0)�1e  k2, (4.8)
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where k is the value of the inverse cumulative chi-square distribution corresponding to ↵. In others

words, this represents a new criterion for identifying inliers, which takes point and model uncertain-

ties into account.

While the above discussion describes a probabilistic interpretation, a simple geometric formu-

lation may also be constructed, following (Ochoa and Belongie, 2006). Consider the transferred

point x̂0 = Hx, with mean denoted by µx̂0 and covariance ⇤x̂0 . Given some probability ↵, and the

corresponding value of k, the goal is to determine whether the measured point x0 lies within this

bound. A simple geometric interpretation can be formed by noting that the set of equal likelihood

points that satisfy

(x0 � µx̂0)T⇤�1
x̂0 (x0 � µx̂0) = k2, (4.9)

corresponds to a conic

C =
h
µx0µ

T
x0 � k2⇤x̂0

i
(4.10)

which for the case of the homography, represents an ellipse. The point x0 lies within this conic if

x0T Cx0 has the same sign as µT
x̂0Cµx̂0 (Ochoa and Belongie, 2006). Note that while this discussion

has centered around the homography, an analogous argument holds for the case of the fundamental

matrix, invoking the duality between lines and points. In other words, given an epipolar line l̂0, with

mean µl̂0 and covariance ⌃l̂0 (as computed from Equation 4.6), the conic that forms the envelope of

lines is given by

C =
h
µl0µ

T
l0 � k2⌃l̂0

i
, (4.11)

which in this case is a hyperbola, with symmetric branches around µl0 . A similar test holds to check

whether the point x0 lies within the branches of the hyperbola.

The above discussion illustrates how knowledge of the model and point uncertainties can be used

to compute the support for a given model. In particular, given a model hypothesis with associated

covariance, the above tests can be applied to each correspondence to determine which points can

be classified as inliers, if the model uncertainty is explicitly taken into account. In analogy with

RANSAC, this process should result in a fraction ↵ of the true inliers being recovered. However,

note that it does not make sense to apply the uncertainty analysis to a sample that is contaminated,

since the formulation described in Section 4.3 makes the assumption that the only source of error is
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noise in the point locations, and does not account for outlying matches. We now address the issue

of determining when to apply the covariance test within RANSAC.

4.4.2 Applying the test:

Given that we can compute a set of inliers for a particular hypothesized transform, we then address

the issue of when this covariance check should be applied. As mentioned above, applying the test

to every sample, contaminated as well as uncontaminated, is not meaningful, and would incur a

significant computational overhead. Ideally, if we could identify a sample that had a good chance

of being uncontaminated, we could then apply the covariance test to gather all potential inliers to

this sample. For example, considering Figure 4.2, if we could identify first uncontaminated sample

(i.e., Sample ∂), we could then apply the covariance test to identify all the inliers that support this

model, taking the estimation uncertainty into account.

There have been approaches that address the issue of identifying these “non-random” model

hypotheses. For instance, one way to address this problem is to estimate how likely it is that a con-

figuration of points that form the support for a particular solution, could have occurred by chance.

This is the idea behind the Minimum Probability of Randomness (MINPRAN) algorithm (Stewart,

1995) which estimates this probability by assuming that outlier residuals follow a uniform distribu-

tion. However, as noted in (Torr et al., 1998), applying this technique to the estimation of geometric

entities such as the fundamental matrix is not straightforward. An alternate approach is to formulate

the problem as a p-value test, as in (Chum and Matas, 2005). The probability of having i random

inliers by chance for a dataset with N points is given by a binomial distribution

pN(i) = �i�m(1 � �)N�i
 
N � m
i � m

!
, (4.12)

where � is the probability of a random point being consistent with a contaminated model. Conse-

quently, the minimum size of “non-random” support can then be calculated as

Imin
N = min{ j :

NX

i= j

pN(i) <  }, (4.13)

which represents a simple p-value test to determine the smallest support that has a probability of
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randomness below  (set to 0.05 for a 5% significance test).

A Bayesian approach to this problem was provided in (Brown and Lowe, 2003). In particular,

given a model hypothesis with I inliers, let h denote an indicator variable taking on values of 0 and

1, depending on whether the model hypothesis is bad (i.e., contaminated) or good (i.e., uncontami-

nated). We thus have

p(h = 1|I) =
p(I|h = 1)p(h = 1)

p(I)

=
p(I|h = 1)p(h = 1)

p(I|h = 1)p(h = 1) + p(I|h = 0)p(h = 0)

=
1

1 + p(I|h=0)p(h=0)
p(I|h=1)p(h=1)

. (4.14)

A hypothesis can be considered to be non-random if p(h = 1|I) >  . From the denominator of

Equation 4.14, we see that this quantity depends on the ratio of two values: the probability of

having I inliers to a bad model, and the probability of having I inliers to a good model. If p0 and

p1 denote the probability of a point being consistent with a bad and a good model respectively, then

we assume the following two binomial distributions:

p(I|h = 0) = B(I; N, p0) (4.15)

p(I|h = 1) = B(I; N, p1). (4.16)

As an example, choosing p0 = 0.1, p1 = 0.6, p(h = 1) = 10�6 and  = 0.99 gives the condition

I > 0.31N + 7.0, which represents a simple check to identify consensus sets with non-random

support.

4.4.3 Algorithm

With the above discussion in mind, we now describe a modified RANSAC algorithm that in-

corporates knowledge of the uncertainties into the estimation process. Algorithm 4 outlines the

operation of the cov-RANSAC algorithm. Steps 1 and 2 proceed as in standard RANSAC – min-

imal subsets are randomly sampled from the data in order to compute model hypotheses, whose

support is then verified on all data points. Note that the optimizations discussed in Section 3.2 can
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Algorithm 4 RANSAC with uncertainty estimation: cov-RANSAC
Input: Set of N data pointsU, maximum number of iterations kmax, noise variance �2

Set k = 0, repeat steps 1–4 while k < kmax
1. Hypothesis generation:
Sample a minimal subset of size m at random fromU
Set k = k + 1
Estimate model parameters from this minimal subset
2. Verification:
Evaluate the model and compute the support set Ik
Check if support is non-random: p(model = good||Ik|) >  (see Equations 4.13 and 4.14)
if model with non-random support found then

3. Covariance test and refinement
3a. Compute support accounting for model uncertainty
Compute least squares fit using inlier set Ik
Compute the covariance ⇤T of the transform (Section 4.3)
Find set of inliers Icov using covariance tests (Section 4.4.1)
3b. Local refinement
Run K iterations of inner (non-minimal) RANSAC
Store the support set I⇤cov corresponding to the best model found
4. Confidence in the solution:
Compute the reduced setU = U\ I⇤cov

Compute number of samples kmax from Equation 2.4, using " = |I⇤cov |
(N�|I⇤cov |)

Go to hypothesis generation step
end if

be applied here as well; for instance, prior information can be easily integrated into the sampling

stage to achieve non-uniform sampling (Section 3.2.2), and hypothesis verification can be performed

using a randomized verification strategy (Section 3.2.4). Following verification, we then check if

the current model hypothesis has su�ciently large support, as outlined in Section 4.4.1. The goal

of this step is to identify promising fits to the data, which can then be further refined.

There are two possible outcomes at stage: either the model is rejected as being random fit, or is

accepted. In the first case, we move on to the next hypothesis. In the second case, we have a set of

inliers Ik, obtained using the standard RANSAC threshold. As we have seen (refer Figure 4.2), the

use of this threshold results in a subset of the inliers being found, since we have not compensated

for model uncertainty. To do so, we first compute a least squares fit to the set of inliers, and then

compute the covariance of the resulting transformation (Step 3a). There are two main reasons for

this: first, as noted in (Hartley and Zisserman, 2000: Sec. 5.2.6), if the covariance of the transform

is estimated from a the minimal sample and used to transfer additional points (that were not used
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in its computation), this may lead to errors. The reason for this is that extrapolation far beyond the

set of points used to compute the transform may be unreliable. Secondly, as observed in (Criminisi

et al., 1999; Hartley and Zisserman, 2000), the uncertainty of the model reduces with the number of

points used in its computation. To handle both these issues, we use all available inliers at this stage,

in order to compute an accurate estimate with reduced uncertainty. Following this, we can then carry

out the covariance-based inlier tests as discussed in Section 4.4.1 to compute the support, denoted

by Icov. This set contains all points that support the current (refined) model, explicitly taking the

estimation uncertainty into account. Further refinement is possible as well – for instance, a local

optimization may be carried out, similar to LO-RANSAC (Chum et al., 2003). A simple strategy

(Step 3b) is to generate K non-minimal model hypotheses within an inner-RANSAC loop. The

consensus set I⇤cov corresponding to the best model in this local optimization loop is then stored.

In the standard LO-RANSAC algorithm, following the local optimization step, sampling then

resumes as before, on the entire dataset. The reason is this done is twofold: (a) repeated sampling

might provide a better starting point for the local optimization, thus improving the support slightly

and (b) there might exist a di↵erent model in the data, with potentially larger support. It is due to

these two reasons that sampling then continues on the entire dataset U. However, an additional

optimization is possible. More specifically, since we are explicitly compensating for estimation

uncertainty, the set of inliers Icov contains, on average, a fraction ↵ of the true inliers (recall that

↵ is typically set to 0.95 or 0.99, and is used to compute the chi-square statistic in Equation 4.9).

In other words, at this point, we have identified (almost) the entire set of inliers corresponding to

some model in the data. Thus, if we are confident that there is only a single model in the data, note

that we could potentially stop sampling at this stage, and simply return the best set of inliers found

so far. However, we can make a small modification to the standard stopping criterion, in order to

ensure that we have not missed a di↵erent model with potentially larger support. This is shown

in Step 4 of Algorithm 4. Given the support set I⇤cov, this provides a lower bound on number of

inliers in the data. We can remove these points from the original dataset, yielding a reduced set

U = U\ I⇤cov. We then need to carry out a su�cient number of iterations to ensure, with confidence

⌘0, that no model with support greater than I⇤cov exists within the remaining (N � |I⇤cov|) data points.

The number of iterations can then be computed from the standard stopping criterion ( Equation
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2.4), with " = |I⇤cov |
(N�|I⇤cov |) . This small modification in the stopping criterion allows cov-RANSAC to

terminate in fewer iterations compared to LO-RANSAC.

4.5 Results

In this section, we evaluate the performance of cov-RANSAC on homography and fundamental

matrix estimation. The performance of the approach was evaluated against the standard RANSAC

algorithm and LO-RANSAC (Section 3.2.5.1). Note that for these experiments, we do not assume

the existence of prior information regarding correctness of the correspondences, so we do not com-

pare against techniques that specifically exploit this information. The assumed standard deviation

for the measurement error was set to � = 0.60, and the number of inner RANSAC repetitions was

set to K = 5. For the standard LO-RANSAC, which uses iterative least squares with threshold

tightening, we set the threshold multiplier to 2.0, and use 4 iterations.

4.5.1 Homography estimation

The results for homography estimation are tabulated in Table 4.1, which shows average numbers

over 500 runs for inliers found (I), samples evaluated (k) and estimation error (error). The main

observation to be made is that using the covariance information in RANSAC leads to a 4–5 fold

reduction in the number of samples evaluated compared to standard RANSAC, and a 1.5–2 fold

decrease compared to LO-RANSAC. In addition, the accuracy of the solution returned by cov-

RANSAC, along with the size of the final support, is virtually identical to that of LO-RANSAC.

To see the e↵ect of applying the covariance test within RANSAC, consider Figure 4.5. Figures

4.5(a) and 4.5(c) show two test images pairs. The green points overlaid in these figures represent

inliers to some uncontaminated model hypothesis generated during the RANSAC sampling pro-

cess. Due to the e↵ects of noise, only a subset of inliers are recovered. We can now compute the

covariance of the homography and use this to find the support set Icov, as detailed in Section 4.4.1

and Algorithm 4. This is illustrated in Figures 4.5(b) and 4.5(d), with inlier points overlaid on the

right image of the corresponding image pair. The images also show the uncertainty ellipses for the

case where points are transferred from the left image to the right, with the ellipses computed from

Equation 4.10 with ↵ = 0.95. Note that by explicitly compensating for model uncertainty, a number
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RANSAC LO-RANSAC cov-RANSAC

A : " = 0.46,N = 2540 I 994±68 1147±7 1148±2
k 160 74 35

error 1.66±0.29 1.12±0.14 1.08±0.07

B : " = 0.43,N = 1967 I 732±48 823±4 822±5
k 247 96 54

error 2.63±0.46 1.81±0.10 1.78±0.08

C : " = 0.24,N = 454 I 96±6 104±0 104±0
k 2687 1001 618

error 3.04±0.80 1.94±0.09 1.99±0.08

D : " = 0.34,N = 495 I 151±11 168±0 168±0
k 663 254 141

error 2.32±0.47 1.47±0.01 1.47±0.01

Table 4.1: Comparison of the di↵erent RANSAC techniques for homography estimation on real
data. The table shows, for each image pair and algorithm, the average number of inliers (I), samples
evaluated (k) and estimation errorl (error). Note that cov-RANSAC achieves a a reduction in the
number of samples, while maintaining the same accuracy as LO-RANSAC.

of additional inliers are recovered, thus significantly increasing the support.

4.5.2 Fundamental matrix estimation

A similar performance comparison was performed for the task of estimating the epipolar geometry

for image pairs. The results of the evaluation are shown in Table 4.5.2, which tabulates average

numbers over 500 runs, for all techniques. The results again demonstrate the advantage of using the

uncertainty information. It can be seen that the proposed technique leads to a 6–8 fold reduction in

the number of samples evaluated compared to RANSAC, while again maintaining the same accuracy

as LO-RANSAC. In addition, due to the modified termination criterion, cov-RANSAC requires

approximately 1.5–3.0 times fewer samples than LO-RANSAC. These results again underscore the

benefit of incorporating knowledge of the uncertainty of the estimation process into a RANSAC

framework.

98



(a) (b)

(c) (d)

Figure 4.5: Example results showing the use of the covariance test in computing the support for
homography estimation. Figures (a), (c) show the images pairs used. The green points overlaid in
Figures (a), (c) represent inliers to an uncontaminated model hypothesis sampled in RANSAC. Due
to the e↵ects of noise, only a subset of inliers are recovered. Figures (b), (d) show the results of
applying the covariance-based test to find inliers, overlaid on the right image of the corresponding
image pair. The images also show the uncertainty ellipses corresponding to each point. Note that
by explicitly compensating for model uncertainty, a number of additional inliers are recovered.

4.6 Discussion

In this chapter, we demonstrated how uncertainty information may be incorporated into a random

sampling framework, in order to robustly estimate the support for a model generated from noisy data

points. The resulting algorithm, cov-RANSAC, achieves a significant reduction in the number of

samples compared to standard RANSAC, and provides a modest improvement over LO-RANSAC.

While the framework we describe is flexible, and can be combined with other techniques (for
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RANSAC LO-RANSAC cov-RANSAC

A : " = 0.57,N = 575 I 315±12 328±1 328±1
k 440 175 58

error 0.71±0.18 0.45±0.04 0.43±0.05

B : " = 0.38,N = 1088 I 381±13 402±4 404±2
k 7806 2951 1112

error 1.79±1.27 1.07±0.53 0.88±0.28

C : " = 0.45,N = 904 I 388±10 403±5 402±5
k 2315 818 299

error 1.92±1.14 1.04±0.74 0.99±0.83

D : " = 0.38,N = 346 I 118±6 128±2 128±1
k 9745 3538 1278

error 1.75±0.77 1.58±0.35 1.58±0.29

Table 4.2: Comparison of the di↵erent RANSAC techniques for fundamental matrix estimation on
real data. The table shows, for each image pair and algorithm, the average number of inliers (I),
samples evaluated (k) and estimation error (error).

instance, randomized model verification), there are some limitations. For instance, note from Al-

gorithm 4, and the discussion in Section 4.4.3, that we use non-minimal samples while computing

the model covariance, in order to reduce uncertainty in the parameter estimates. While this proves

to be e↵ective in practice, there is still the issue of degenerate data configurations. For instance,

considering the simple case of a line, if the data points used to estimate the line are spatially very

close together, the corresponding uncertainty in the parameter estimates may be high, which in turn

will lead to a large support in cov-RANSAC. It is possible to mitigate this e↵ect by placing some

constraints on the covariance matrix – for instance, a threshold on the largest eigenvalue of the co-

variance matrix ⌃T . However, this may prove to be di�cult to set in general, and thus, cov-RANSAC

requires other safeguards against these degenerate configurations.

In this work, we assumed a common, isotropic covariance matrix for each feature point, in order

to simplify the discussion. We note that there exist methods to more precisely model the location
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uncertainty for common feature detectors. For instance, (Zeisl et al., 2009) describes a method to

compute anisotropic covariance matrices for SIFT and SURF feature points. Integrating this into

cov-RANSAC, and analysing the performance, both in terms of accuracy, as well as computational

overhead, would be an interesting direction for future work.
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Chapter 5

Scale Adaptive Robust Estimation via
Residual Consensus

5.1 Introduction

At this stage, we turn our attention to the issue of the inlier threshold parameter in RANSAC.

As we have seen, since models in RANSAC are scored based on their support, it is precisely this

parameter that allows RANSAC to distinguish between good and bad model fits. Indeed, the cost

function (Section 2.2.1) in RANSAC may be viewed as being equivalent to finding the location of

the densest band of data points, with width specified by the user. While it may indeed be possible

to often “guess” a reasonable threshold value, there are applications, such as the alignment of 3D

reconstuctions with arbitrary scale (see Figure 5.1), where this choice is less obvious. In addition,

it has been shown that if the chosen threshold deviates significantly from the true value, RANSAC

can provide biased, or simply incorrect results (Choi and Medioni, 2009).

In this chapter, we present a new robust estimation framework that is agnostic to the threshold

parameter. Instead, the algorithm we present is based on a simple observation: that the residual

errors for “good” models are in some way consistent with each other. We show that it is possible to

e�ciently identify this stable behaviour by exploiting residual ordering information coupled with

simple non-parametric statistical tests. This leads to an very simple, yet e↵ective, algorithm whose

performance over a range of noise levels and inlier ratios is comparable to that of RANSAC, whilst



1 2
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Figure 5.1: (1-2) Two sparse 3D submodels obtained from a structure-from-motion system. The
two reconstructions are to be merged into a common reference frame via a 3D similarity trans-
formation. Since the scale of each reconstruction is arbitrary, a good choice of threshold is not
obvious. (3) Merged reconstruction (best viewed in colour) obtained using our method, requiring
no prior knowledge of noise scale or inlier ratio.

completely eliminating the inlier threshold parameter.

To summarize the main contributions of this chapter: (1) we develop a new strategy for robust

estimation, based on the behaviour of data point residuals. (2) the method does not require an in-

lier threshold, or a worst-case assumption about the level of data contamination; this is a strongly

distinguishing characteristic compared to current techniques, which require at least one of these

assumptions to be made. (3) the e↵ectiveness of the algorithm is demonstrated on a variety of chal-

lenging estimation problems covering a range of inlier ratios, noise levels, and model complexities.

5.2 Related Work

Since the introduction of the original RANSAC algorithm, a number of popular variants have

emerged, many of which were discussed in Section 3.2. Orthogonal to these advances, there have

also been attempts to develop robust estimators capable of operating without a threshold parameter.
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Below, we discuss some of the important work in this area.

Since scoring models based on their support, as in RANSAC, requires a threshold, one possible

approach is to to optimize a di↵erent cost function. Least Median of Squares (LMedS) (Rousseeuw,

1984), scores models based on their median error residual, returning the model with lowest score.

However, this breaks down when the data consists of more than 50% outliers, since the median

residual is no longer informative. While it is, in principle, possible to replace the median by a dif-

ferent order statistic, this requires a priori knowledge of the level of data contamination. MINPRAN

(Stewart, 1995) builds on the assumption that outliers are uniformly distributed within some range,

and then searches for a combination of model parameters and inliers that are least likely to have

occurred by chance; however, this assumes knowledge of the dynamic range of the outlier data.

A number of closely linked techniques have been proposed to address the problem of multi-

model fitting without prior scale, primarily for segmenting multiple structures from range data

(Miller and Stewart, 1996; Lee et al., 1998; Wang and Suter, 2004). MUSE (Miller and Stew-

art, 1996) and ALKS (Lee et al., 1998) are related techniques that minimize the kthorder statistics

of the squared residuals. It has been noted (Wang and Suter, 2004) that their ability to handle large

outlier ratios is limited. ASSC (Wang and Suter, 2004) uses a mean-shift algorithm to detect modes

in the residual distribution, using this to estimate the noise scale. However, this can be computa-

tionally expensive, particularly as the model complexity increases (Zhang and Kosecka, 2006). It

it worth noting that while many of the above techniques have been evaluated for for the range data

problem, it has been observed (Torr and Murray, 1997) that extending them to other estimation prob-

lems, such as multi-view geometric relations, can be challenging. The recently proposed StaRSaC

algorithm (Choi and Medioni, 2009) relaxes the requirement of a fixed threshold, by exhaustively

testing all choices in some range. For each of T thresholds, RANSAC is executed K times, and a

value is chosen that shows minimum “variance of parameters”. Even for reasonable values of T and

K, this quickly becomes computationally infeasible (e.g., testing T = 30 thresholds with K = 30

requires almost three orders of magnitude more computation than RANSAC).

Two recent approaches that are similar in spirit to ours are those of (Zhang and Kosecka, 2006)

and Kernel-Fitting (Chin et al., 2009b). Both these works use the observation that for a given

point, the distribution of residuals with respect to a large set of randomly generated models can be
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used to reveal whether the point is an outlier or an inlier. In particular, the kernel-based measure

introduced in (Chin et al., 2009b) has been shown to yield good results for the problem of fitting

multiple structures to noisy data (Chin et al., 2009a; Chin et al., 2010). However, one limitation

of these strategies is their implicit reliance on sampling a “su�cient” number of uncontaminated

models. It is worth noting that models that are contaminated carry no reliable information about

the validity of a data point not contained in the minimal sample itself, since the error of any inlier

data point to a bad model is arbitrary. Thus, it becomes imperative to sample enough models for

the distribution of residuals to be su�ciently “informative”. We take a di↵erent view: instead of the

residual distributions of points, we observe the residual distributions of models. The intuition here

is that two uncontaminated models will be “alike” in some way, while contaminated models will

disagree in an unstructured way. This results in a simpler, yet much more e�cient algorithm. A more

recent extension of the ideas in (Chin et al., 2009b; Chin et al., 2009a; Chin et al., 2010) is presented

in (Wong et al., 2011), which combines two ideas: sorting models based on their distances to data

points (as in (Chin et al., 2009b)), as well as sorting data points based on their distances to models

(which is similar to the approach we take). While the method we propose shares a very similar idea,

the goal is di↵erent: in our case, we focus on the case of single model robust estimation, with the

goal being to e�ciently compute the model parameters without requiring any data or model specific

thresholds. In contrast, the goal in (Wong et al., 2011) is multi-model robust estimation, and the

sorting is used to speed up the stage of hypothesis generation. However, there is still an implicit

reliance on a user defined parameter; namely, the inlier ratio in the data.

Finally, we note that one fundamental advantage of our technique compared to the methods

discussed in this section (Rousseeuw, 1984; Stewart, 1995; Miller and Stewart, 1996; Lee et al.,

1998; Wang and Suter, 2004; Zhang and Kosecka, 2006; Chin et al., 2009b; Chin et al., 2009a; Chin

et al., 2010; Wong et al., 2011) is the ability to adaptively stop evaluation. In standard RANSAC,

the current best inlier count can be used to adaptively set the maximum number of trials. However,

in the absence of a threshold, current techniques either require knowledge of the inlier ratio, or

must run the algorithm under a worst-case assumption–in other words, drawing enough samples to

guarantee success for the worst inlier ratio that could potentially occur in the data. RECON does

not have this limitation; we are able to adapt “on-the-fly” to the level of data contamination, without
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requiring any data-specific parameter tuning. We note that this advantage is a consequence of the

fact that, much like RANSAC, we address the specific problem of single model robust estimation,

and develop an e�cient threshold-free framework for this problem. While the single-model case

indeed arises in a number of practical scenarios of interest, it is worth noting that there are certain

applications (e.g., motion segmentation), for which the proposed method is not an ideal fit.

5.3 Approach

5.3.1 Residual Consensus

The key idea behind RANSAC is that a model generated from an uncontaminated minimal sample

(i.e., containing only inliers) will have larger support than a contaminated model (generated from

samples containing at least one outlier). Provided enough random samples have been drawn to guar-

antee, with some confidence, that at least one of the minimal samples is free from outliers, RANSAC

will terminate successfully, returning the corresponding model with highest support. Observe that

RANSAC uses the threshold to essentially distinguish between good and bad model estimates. In

the absence of a threshold, however, it becomes harder to make this distinction. Our technique is

based on the intuition that, near the true threshold value, uncontaminated models capture a stable

set of points (i.e., the set of inliers). On the other hand, uncontaminated models do not demonstrate

this consistent behaviour. In other words, looking at the relationship between subsets of models can

reveal useful information about the validity of the models themselves. To formalize this intuition,

we now consider more closely the behaviour of uncontaminated vs. contaminated models.

5.3.1.1 Uncontaminated models

Given an uncontaminated model and access to the true noise variance, it is possible to compute a

region containing a fixed fraction ↵ of the total number of inliers (Hartley and Zisserman, 2000;

Raguram et al., 2009). To see why this is the case, recall the discussion in Section 2.2.4; under the

typical assumption that the measurement error for inliers is Gaussian, with zero mean and variance

�2, the squared point-model errors between an inlier and the “true” model can be represented as

a sum of n squared Gaussian variables, where n is the codimension of the model – i.e., a chi-
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square distribution with n degrees of freedom. Thus, in order to recover a fraction ↵ of inliers, an

appropriate threshold t can be computed as

t2 = ��1
n (↵)�2, (5.1)

where ��1
n (·) is the inverse cumulative chi-square distribution. Let our estimate of the (a priori

unknown) variance be �̂2. If our estimate �̂2 is close to the true �2, then using the threshold t for

an uncontaminated model will result in a fraction ↵ (usually set to 0.95 or 0.99) of the inliers being

found. For the case of line fitting, this is shown in Fig. 5.2(a).

Note, however, that to be strictly correct, one must take the uncertainty of the estimated mod-

els into account, as discussed in Chapter 4. To recap: since models are generated from noisy data

points, this error propagates to the model itself. As a consequence, when using the “ideal” thresh-

old, uncontaminated models do not always capture a fixed fraction ↵ of inliers. However, if we

characterize the uncertainty of a model M via its covariance matrix ⌃M and explicitly perform error

propagation, this can be remedied (Raguram et al., 2009). For instance, when fitting a line, we can

derive an expression for the covariance matrix ⌃L of the line (Meidow et al., 2009b). To capture a

fraction ↵ of true inliers, we now need to consider the ↵-percentile error envelope defined by ⌃L,

which is in the form of a hyperbola (Fig. 5.2(b)).

From the discussion above, given that a fraction ↵ of the inliers can always be recovered for

an uncontaminated model, now consider a pair of uncontaminated models. It can be seen that

the expected fraction of total inliers in the intersection of the two error envelopes is given by ↵2.

For typical values of ↵ close to 1.0, note that this expected fraction is close to ↵, implying that

uncontaminated models capture a stable set of points with respect to each other (Fig. 5.2(c)). In

other words, if �̂2 ⇡ �2, uncontaminated models will have a fraction ⇡ ↵ of their inliers in common.

5.3.1.2 Contaminated models

Assuming unstructured outliers, observe that models generated from contaminated subsets have

arbitrary parameters. Given our estimate of the noise variance �̂2, we can break down the behaviour

of contaminated models into two scenarios, based on the relationship between the estimated �̂2, and

the true �2.

107



(a) (b)

(c) (d)

Figure 5.2: (a) Error bound that captures ↵ = 99% of true inliers with respect to a noise-free,
uncontaminated model. Using the inverse chi-square cdf, this gives t = 2.57�. (b) Error envelope,
following model covariance estimation, capturing ↵ = 99% of the inliers for a model generated from
noisy inliers. (c) Overlap between two uncontaminated models, with a fraction ⇡ ↵ of their inliers
in common (d) Error envelopes for contaminated models, capturing random data points. (Figure
best viewed in colour)

(1) �̂2  �2: First, assume �̂2 = �2. As before, we can use the true noise variance to com-

pute ↵-percentile envelopes, but they now capture essentially arbitrary data points (Fig. 5.2(d)).

In particular, the probability of a pair of contaminated models having significant overlap in their

inlier sets tends to zero, since this would amount to picking essentially the same minimal sample

twice. To see this, assume that we have N data points, with I inliers. The probability of picking an

uncontaminated minimal sample of size m is given by

Pgood =

m�1Y

i=0

I � i
N � i

⇡ (I/N)m (5.2)

Now, assume we have generated a contaminated model. Picking a second model that happens by
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chance to be consistent with the first is governed by the probability

Pbad =

m�1Y

i=0

I0 � i
N � i

(5.3)

where I0 is the number of points supporting the first “bad” model. Assuming unstructured outliers,

we have I0 ⌧ I, implying that Pbad ⌧ Pgood. Note that exactly this same reasoning holds for the

case of �̂2 < �2.

(2) �̂2 > �2: The extent of the ↵-percentile envelopes is governed by �̂2. In particular, for

�̂2 � �2, the computed error envelopes might become so large that they include all data points.

This leads trivially to a large overlap for any pair of models, uncontaminated or otherwise, since

all points fall in the intersection. If no prior is available on the potential values of �̂, we must use

additional constraints to determine whether we have an overestimate of �. We do so by leveraging

knowledge of the distribution of residuals.

Given two models M1 and M2, assume that there is significant overlap in their inlier sets. As-

suming that the size of this overlap is n, we have two residual vectors:

R1 = {r1
1, r

1
2, ..., r

1
n}

R2 = {r2
1, r

2
2, ..., r

2
n}, (5.4)

measured from each model to the n points. Under typical assumptions, we know that the distribution

of inlier residuals from an uncontaminated model approximates a chi-square distribution. In other

words, if M1 and M2 are uncontaminated and �̂ ⇡ �, the vectors R1 and R2 can be thought of

as two independent random samples drawn from a common underlying distribution. On the other

hand, when one or more of the models is contaminated and �̂ � �, the intersection will contain an

arbitrary combination of inliers and outliers, and it is unlikely that a single underlying distribution

could have generated both sets of residuals. Thus, a statistical test that evaluates the similarity

between residual distributions can reveal useful information about the nature of the models. The

Kolmogorov-Smirnov (KS) (Chakravarti et al., 1967) and Anderson-Darling (AD) (Stephens, 1974)

tests are statistical tools that may be used to compare a sample with a reference distribution or to
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compare two empirical samples. The KS test computes the statistic

Dn,n =

r
n
2

sup
x

���F1,n(x) � F2,n(x)
��� , (5.5)

where n is the number of points, F1,n(x) is an empirical distribution function and F2,n(x) is either a

reference distribution (one-sample KS test) or a second empirical distribution function (two-sample

KS test). We wish to test the null hypothesis H0 that the two samples R1 and R2 are from the same

underlying distribution (note that this is a non-parametric test, so the exact form of this common

distribution does not have to be specified). H0 is rejected at a level � (typically 1% or 5%) if Dn,n >

C�, where C� is the critical value of the Kolmogorov distribution (for details, refer (Chakravarti

et al., 1967)). Simply put, if the residuals o↵er strong evidence against the null hypothesis, the

models can be discarded as invalid.

Summarizing the discussion thus far, we now have two constraints.

1. At the true �, a pair of uncontaminated models will have a fraction ⇡ ↵2 of their inliers in

common. Conversely, the probability of a pair of contaminated models having this level of

overap is very small.

2. The inlier residuals for a pair of uncontaminated models should correspond to the same un-

derlying distribution

We refer to these two conditions together as ↵-consistency, and we can now develop a simple al-

gorithm that exploits this behaviour. In brief: iterate over possible values of �, and pick the lowest

� that gives rise to a set of ↵-consistent models (i.e., models with significant overlap, and whose

residuals are statistically likely to correspond to the same distribution). The algorithm is outlined in

Algorithm 5.

While our initial experiments have verified the correctness of this approach, one significant

limitation is that it is computationally expensive. The algorithm requires us to examine all possible

� values and to compute the overlap in support for each. In the context of this limitation, we now

present a practical algorithm that e�ciently exploits residual ordering information to achieve the

same results.
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Algorithm 5 Iterative robust estimation via ↵-consistency
Repeat 1-3 until K mutually ↵-consistent models found
1. Hypothesis generation:
Hypothesize model Mi from random minimal sample
2. Model verification:
Compute and store the residuals of Mi to all data points
3. Test ↵-consistency
for all �̂ in range (�min...�max) do

for all prior models M j in {M1,M2...,Mi�1} do
Use �̂ to compute overlap between the inlier sets for Mi and M j

end for
if set of K pairwise consistent models found then

if inlier residuals pass the KS statistical test then
Return �̂, models and set of inliers

end if
end if

end for

5.3.2 E�cient Residual Consensus

Given a model Mi, consider its residuals to all N data points, Ri = {ri
1, r

i
2, ..., r

i
N}. Assume that

for each model, we sort the residuals to be in increasing order, and retain the indices of the sorted

points. In other words, we have a set S i = {�i
1, �

i
2, ..., �

i
N}, representing a permutation of the indices

1, 2, ...,N such that ri
�i

1
 ri

�i
2
 ...  ri

�i
N
. We define the partial overlap set ⇥i, j

n as

⇥
i, j
n = S i

1:n

\
S j

1:n (5.6)

where i and j denote two models Mi and M j and S i
1:n is the subset containing the first n points of

S i. We also define the normalized partial overlap, ✓i, j
n , to be the scalar quantity

✓i, j
n =

1
n
|⇥i, j

n | (5.7)

This represents the number of common elements when considering the first n points, normalized by

the subset size. We finally define the expected fraction of common points when considering a subset

of size n, E✓n ,

E✓n = E[✓i, j
n ] =

1
n

nX

k=0

kp(|⇥i, j
n | = k) (5.8)
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One way to think about the index sets S i
1:n is the following. By choosing a subset of size n, we

are implicitly defining a threshold ti
n (and thus, some �̂), and then selecting from the vector Ri, those

points with ri < ti
n. The approach we take is based on the intuition that for uncontaminated models,

inlier indices should loosely group together at the front of set S i. On the other hand, contaminated

models should represent random permutations of the point indices. We shall now look more closely

at this behaviour.

1. Uncontaminated models: Given sorted index sets S i and S j for a pair of uncontaminated mod-

els, it is evident that inlier indices should appear towards the front of these sets (by definition, inliers

are closer to uncontaminated models than outliers). Note that due to model noise, the relative or-

dering of the inlier indices is arbitrary. However, as we consider progressively larger subsets S i
1:n

and S j
1:n, this defines implicit thresholds ti

n and t j
n . From Section 3.1, we know that when both

ti
n and t j

n are near the true threshold, the subsets S i
1:n and S j

1:n each contain a significant fraction ↵

of the inliers. In other words, the normalized overlap ✓i, j
n should approach ↵2 near the true threshold.

2. Contaminated models: Given a pair of contaminated models with arbitrary parameters, we do

not expect to see consistent structure when inspecting their residuals. In other words, after sorting

by residuals, the sets S i and S j for a pair of bad models are likely to be random permutations of the

point indices 1, 2, ...,N. The probability that the subset S i
1:n for model Mi, has k elements by chance

in common with the subset S j
1:n can be derived as:

p(|⇥i, j
n | = k) =

 
n
k

! 
N � n
n � k

!,  
N
n

!
(5.9)

Substituting into Eqn (5.8), this results in

E✓n = n/N (5.10)

In other words, the normalized overlap between two contaminated models approaches ↵2 only as

n ⇡ N. This poses a question: how do we distinguish this case from that of two good models where

the inlier ratio is close to 100%? Some consideration will reveal that this ambiguity corresponds
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Figure 5.3: (Left-Middle-Right): 2D-line, homography, 3D similarity transform estimation. (Top
row): Normalized overlap ✓i, j

n , vs. subset size n for pairs of uncontaminated models. Note that close
to the true inlier ratio (40%), ✓i, j

n ⇡ ↵2. (Bottom Row): Normalized overlap ✓i, j
n vs. n for random

pairs of contaminated models. Also overlaid is the predicted value from Eqn. (5.10). Note that
✓i, j

n ⇡ ↵2 as n ⇡ N.

exactly to the discussion in Sec. 3.1.2, of the case �̂ � � where the error envelopes include

essentially all data points. Note that given a set of inlier residuals {ri
1, r

i
2, ..., r

i
n}, a robust estimate of

the noise variance may be easily computed (Miller and Stewart, 1996; Torr and Murray, 1997) as

�̂ = C
q

median{ri
m

2},where m = 1, ..., n (5.11)

and C is a constant that makes �̂ unbiased for a particular target distribution of residuals. For

instance, C = 1.4286(1 + 5/(n � m)) for Gaussian distributed residuals, where m is the minimal

sample size. When a pair of bad models is found to have large overlap, the corresponding scale

estimate from Eqn. (5.11) is typically dramatically larger than the true value. Thus, if a loose

estimate (even up to an order of magnitude) of the maximum possible scale is available, it can be

used to quickly discard bad model pairs. Alternatively, the same KS statistical test from Section 3.1

can be used to determine the validity of the residuals. Note that all the above arguments hold when

one of the two models is bad; the probability of a random model producing the same sorted indices

as a good model is also given by Eqn. (5.9).

To empirically verify our analysis of the behaviour of contaminated vs. uncontaminated mod-

els, we conducted the following experiments. Synthetic data was generated for three model-fitting

examples: line, homography and 3D similarity estimation. The inlier ratio in all cases was fixed
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at 40% and N = 1000 points were generated. We then plotted the normalized partial overlap ✓i, j
n ,

between random pairs of good models and bad models (Fig. 5.3). The following observations are

pertinent:

1. For pairs of uncontaminated models (top row in Fig. 5.3), we observe that when n ⇡ I (close

to the true inlier ratio of 40% in these experiments), the value of ✓i, j
n approaches ↵2. This

supports our observation regarding ↵-consistency for uncontaminated models.

2. For pairs of contaminated models (bottom row in Fig. 5.3), it can be seen that there is close

agreement between the theoretical and obtained plots. In particular, ✓i, j
n ⇡ ↵2 only for n ⇡ N,

as predicted in Eqn (5.10). This validates the argument that the residuals for contaminated

models are unstructured.

5.3.3 RECON: Algorithm Description

The details of the Residual Consensus (RECON) algorithm are presented in Algorithm 6.

Algorithm 6 RECON: REsidual CONsensus
Repeat 1-3 until K consistent models found
1. Hypothesis generation:
Hypothesize model Mi from random minimal sample
2. Model verification:
Sort residuals, store sorted index set S i and residual set
3. Test ↵-consistency
for all prior models M j in {M1,M2...,Mi�1} do

if Mi, M j have ✓i, j
n � ↵2 for some n then

if �̂ < �max (Eqn. 5.11) or KS test passed (Eqn. 5.5) then
Add to set of ↵-consistent models
if K mutually consistent models found then

Return set of K models and inliers
end if

end if
end if

end for
4. Refine to obtain final solution
Sort inliers by mean of their residuals to the K models
Generate M non-minimal models using PROSAC-based sampling of the sorted inlier set
Recompute pairwise ✓i, j

n , select minimum n that satisfies ✓i, j
n � ↵2 for i, j 2 1, ...,M.

Re-estimate final model using the best inlier set.

As in Algorithm 5, note that in practice, we look for K pairwise ↵-consistent models to provide
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robustness to structure in the outliers. In all our experiments, setting K = 3 was su�cient in practice.

From a computational viewpoint, once enough samples have been drawn to rule out high inlier ratios

(say, " > 90%), the residual test can be bypassed. This is because a bad model pair has ✓i, j
n ⇡ ↵2

only for n ⇡ N (Eqn. 5.10), which implies that the resulting inlier ratio is close to 100%. If enough

models are drawn to rule out this case, ↵-consistent models with large n can be directly excluded.

An additional speedup can obtained by discarding models that violate certain basic checks (such as

oriented constraints, for geometry estimation). As noted in (Chum et al., 2004), this can result in

upwards of 70-80% of the models being discarded. This yields a much smaller core set of models

that needs to be checked (Step 3 in Algorithm 6).

For clarity, we have thus far deferred the issue that a small number of outliers may satisfy our

(implicit) threshold constraints, and be included in the overlap sets. In addition, the index sets S 1:n

can be viewed as an approximation to the covariance envelopes in Section 5.3.1. The practical

implication of these two points is that we sometimes overestimate the inlier set. In other words,

when ✓i, j
n ⇡ ↵2, we sometimes have n > I, implying that we have included additional outliers.

Observe that the source of this problem is noise in the minimal sample. To mitigate this, we generate

M non-minimal samples from the returned inlier set, using PROSAC-based non-uniform sampling

(Step 4 in Algorithm 6). Reestimating the overlap should now result in n ⇡ I, since we are explicitly

compensating for model noise. As will be shown in Sec. 5.4, this results in the final set of inliers

being very close to the ground truth.

5.4 Experiments

In this section, we evaluate RECON’s performance on a number of estimation problems. We stress

that RECON does not require an inlier threshold, or any model-specific parameter tuning. The

only required parameters are ↵ and K, which are set to 0.99 and 3 respectively, for all experiments.

Finally, note that RECON is able to adapt to the level of data contamination, and does not require

the generation of an a priori fixed number of hypotheses.
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Line Plane H F
k err k err k err k err

" = 0.6 RANSACF 106.8 1.38 137.1 1.55 218.3 3.33 266.2 3.58

� = 3.0 LMedSF 11 1.24 23 1.38 47 2.9 382 2.98
RANSACT 23.1 1.23 31.5 1.41 66.4 2.97 271.1 3.1

LMedST 11 1.24 23 1.38 47 2.9 382 2.98
RECON 29.6 1.2 38.2 1.35 49.4 2.91 133.1 3.04

" = 0.4 RANSACF 176.2 0.91 389.5 1.2 489.2 3.17 3544.4 2.98

� = 2.0 LMedSF 11 0.87 23 1.41 47 9.31 382 12.21
RANSACT 56.4 0.7 99.7 0.88 244.2 2.05 2431.5 2.28

LMedST 47 0.72 191 0.8 766 2 49082 1.88
RECON 46.9 0.73 72.5 0.89 166.9 2.04 1879.3 2.34

" = 0.3 RANSACF 289.8 1.08 629.2 1.36 1101.8 3.18 23450.5 3.26

� = 2.0 LMedSF 11 2.01 23 5.72 47 17.2 382 25.33
RANSACT 79.7 0.7 212 0.82 891.2 2.55 30153.5 2.42

LMedST 47 0.77 191 0.74 766 2.51 49082 2.13
RECON 58.3 0.75 149.5 0.76 490 2.56 13751.4 2.44

" = 0.3 RANSACF 344.6 1.62 702.3 2.49 1798.3 6.03 94303.3 5.39

� = 4.0 LMedSF 11 2.85 23 6.12 47 24.4 382 46.45
RANSACT 115.1 0.96 291.8 1.67 1373.4 4.61 35983.9 4.06

LMedST 47 1.03 191 1.65 766 4.48 49082 3.61
RECON 77.2 0.97 172.4 1.72 612.3 4.47 13894.4 3.98

Table 5.1: Results on synthetic data. The table lists the number of samples (k) and mean error
(err) for each dataset and algorithm. err is the mean error of ground truth inliers to the recov-
ered model (perpendicular dist. for line and plane, symmetric transfer error for H, Sampson error
for F). RANSACT /LMedST refer to running the algorithms with ground truth parameters, while
RANSACF /LMedSF refer to fixed parameters. Note that RECON provides the same accuracy as
RANSACT /LMedST , without any a priori knowledge of the parameters.

5.4.1 Synthetic data:

We exhaustively evaluated the performance of RECON on four estimation problems: 2D line, 3D

plane, homography (H), and fundamental matrix (F). The inlier ratio " was varied over a wide range

[0.25-1.0], in steps of 0.05. For the line and plane experiments, we generated points within a square

(resp., cube) of side 500, and added zero-mean Gaussian noise to the inliers, with � varying from

0.5-6.0. For the H and F tests, we generated synthetic 2D correspondences, varying � from 0.5-4.0

(roughly the accuracy of current feature detectors (Mikolajczyk and Schmid, 2004)). For each (",�)

pair, the total number of points was randomly chosen in the range [500, 2000].

Given the large number of parameter combinations tested, we present a representative selection

of the results, noting briefly that RECON provided accurate results over the entire test dataset. Table

5.1 provides a baseline comparison of RECON with RANSAC and LMedS, listing the number of

samples drawn (k) and the mean error (err), averaged over 500 runs. RANSACF and LMedSF
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denote “realistic” cases, where the algorithms are run using commonly chosen parameter values.

We use � = 1.0 to set the RANSACF threshold, and simply use the median score in LMedSF , with

the number of trials computed using a 50% inlier ratio. To denote the “ideal” case, we also run the

algorithms with true parameter values which, of course, are typically unknown. For these cases,

denoted by RANSACT and LMedST , the RANSAC threshold is set using the true �, and LMedS is

adapted to switch between the median or the 25% lower quartile, depending on the true ".

Perhaps the most important observation to be made from the results is that RECON is able to

provide results with virtually the same accuracy as RANSACT and LMedST , while requiring no

parameter tuning. In addition, when RANSAC and LMedS are run with incorrect parameter values,

their performance deteriorates significantly. An interesting statistic to note from Table 5.1 is that the

number of trials for RECON is appreciably lower than for RANSAC, even when RANSAC is run

using the true threshold value. Indeed, as shown in Figure 5.4(a), the number of samples drawn by

RECON is significantly close to that predicted by the standard RANSAC stopping criterion using

a 95% confidence level. This is not a coincidence; as noted in Section 2.2.3, it can be shown

that for a 95% confidence in the solution, three uncontaminated samples are drawn on average

in RANSAC before the confidence in the solution is achieved. Since these experiments were run

looking for K = 3 consistent models, it is these samples that RECON finds. RANSAC has the

opposite problem: since noisy models have lower support, this means more samples must be drawn

to meet the stopping criterion. Figure 5.4(b) plots the fraction of true (i.e., ground truth) inliers

found by RECON. Note that in all cases, RECON returns close to 100% of the true inliers, while

RANSAC su↵ers, particularly for higher noise levels. This relates back to the discussion in Chapter

4; using a fixed threshold with noisy models implies that not all inliers will be found. On the other

hand, since we look for consistent sets of inliers, and do not impose a fixed threshold, a higher

fraction of true inliers is returned.

To further test the sensitivity of RANSAC-based methods to incorrect estimates of the scale,

we generate synthetic putative matches for homography estimation, with " = 0.4 and � = 0.5.

Subsequently, we run RANSAC and LO-RANSAC, with the threshold computed using a range

of noise scales, �est 2 [0.01, 10.0]. These scale estimates are substituted into Equation 5.1, with

↵ = 0.95, to obtain the corresponding threshold values. We also run MSAC and LO-MSAC, which
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Figure 5.4: Plots for homography estimation with " = 0.4. (a) Number of samples vs. �. Note that
RECON is significantly close to the theoretical estimate. (b) Fraction of true inliers recovered vs.
�. RECON returns close to 100% of the inliers.
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Figure 5.5: Plots for homography estimation with " = 0.4 and� = 0.5. (a) Estimation error vs. prior
estimate of noise scale �est. The x-axis is on a log-scale (b) Number of samples vs. prior estimate
of noise scale �est. Both axes use a log-scale. In both plots, the dashed vertical line corresponds
to the true value of � = 0.50. The dashed horizontal lines represent the values for RECON (i.e.,
RECON estimation error in (a), and number of samples in (b)).

are similar to their RANSAC counterparts, but where the standard RANSAC cost function (Equation

2.2) is replaced by the M-estimator cost function (2.12); i.e., outliers are assigned a constant penalty,

but inliers are now scored based on how well they fit the model. The results for this experiment are

shown in Figure 5.5. Figure 5.5(a) plots the estimation error as a function of the assumed noise scale

(and thus the computed inlier threshold). The horizontal red line represents the estimation error for

RECON, which does not require the scale parameter to be specified. The main point worth noting

from the graph is the robustness of the baseline methods to inaccuracy in the scale estimates: the

estimation error for RANSAC and MSAC, particularly when using local optimization, is relatively

low over a wide range of scale estimates. This indicates that even if our estimate of the scale of

inlier noise is o↵ by up to an order of magnitude, it may still be possible to obtain relatively accurate

results using just the baseline methods. However, it is also worth noting that, particularly when the
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assumed scale is a severe underestimate, this can lead to a significant increase in the number of

samples drawn. An underestimate of the scale corresponds to a lower computed threshold value and

thus e↵ectively, a lower inlier ratio – fewer “true” inliers will satisfy the threshold constraint, thus

reducing the support. This is illustrated in Figure 5.5(b), which plots the number of samples required

as a function of the scale estimate. It can be seen that at low scale values, all these approaches require

many more iterations than RECON. In summary, the main points to take away from these results is

that RANSAC and MSAC are, in reality, fairly resilient to mistakes in the estimate of noise scale.

Using these methods is likely to provide a computational advantage, particularly when using the

various optimizations described in Section 3. Howver, there are caveats – for large underestimates

of the scale, RECON can prove to be faster, drawing far fewer samples.

5.4.2 Real data

We also tested RECON’s performance on real data, for four model fitting problems: homography,

essential matrix, fundamental matrix and 3D similarity. Since the ground truth noise variance is

unknown, we use the commonly used setting of � = 1.0 for the two-view estimation problems.

For obtaining putative matches in the 3D similarity case, we compute a mean SIFT descriptor for

each 3D point, and then run the standard matching process between the point sets, using the ratio

test to suppress less distinctive matches. Setting the RANSAC inlier threshold for the 3D similarity

estimation problem is much more di�cult, since the submodels are reconstructed up to an arbitrary

scale. For this case, the threshold was determined using an exhaustive trial-and-error approach. The

results are presented in Table 5.2. Note that the performance of RECON is typically better than

RANSAC, while requiring no threshold. In addition, when using local optimization in RANSAC,

both LO and RECON produce results of similar quality, drawing a comparable number of samples

in both cases. Our implementation of RECON, though as yet unoptimized for speed, has runtimes

between 30 milliseconds and 2.5 seconds for the experiments in Table 5.2, while the corresponding

range for RANSAC is 22ms–1.7s. It is worth noting that while RECON has a computational over-

head compared to RANSAC and LO-RANSAC, it is still much faster than current threshold-free

methods. For instance, the recent approach in (Chin et al., 2010) takes on the order of a minute

to compute the epipolar geometry for a pair of images – irrespective of the inlier ratio. RECON’s
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RANSAC LO RECON RANSAC LO RECON
Homography (H) Essential (E)

a : N = 2450

k 66.5 ± 21 36.2 ± 2 37.9 ± 7

g : N = 962

k 72.3 ± 25 58.7 ± 15 58.9 ± 15
I 1344 ± 96 1670 ± 29 1663 ± 38 I 556 ± 21 600 ± 8 598 ± 12

err 2.63 ± 0.53 1.98 ± 0.25 2.02 ± 0.27 err 3.52 ± 1.01 1.54 ± 0.69 1.55 ± 0.63

b : N = 495

k 588.3 ± 154 238.6 ± 44 224.6 ± 43

h : N = 1110

k 108.2 ± 31 74.3 ± 17 78.5 ± 19
I 153 ± 9 172 ± 12 174 ± 3 I 602 ± 33 632 ± 24 632 ± 25

err 2.59 ± 0.49 2.03 ± 0.11 2.09 ± 0.16 err 0.69 ± 0.21 0.49 ± 0.15 0.48 ± 0.13

c : N = 1967

k 256.6 ± 121 77.9 ± 25 73.3 ± 22

i : N = 1207

k 1092.3 ± 312 416.2 ± 66 407.4 ± 57
I 739 ± 52 990 ± 15 995 ± 23 I 417 ± 41 461 ± 18 465 ± 20

err 1.47 ± 0.45 1.07 ± 0.22 1.07 ± 0.28 err 1.74 ± 0.77 1.12 ± 0.34 1.17 ± 0.38

Fundamental (F) 3D similarity

d : N = 2454

k 52.3 ± 26 45.7 ± 18 39.1 ± 16

j : N = 4529

k 78.1 ± 25 57.4 ± 7 59.9 ± 8
I 1854 ± 33 1890 ± 30 1897 ± 28 I 1640 ± 27 1888 ± 12 1887 ± 14

err 1.80 ± 0.85 0.97 ± 0.26 1.01 ± 0.26 err 0.13 ± 3x10�3 0.09 ± 2x10�3 0.08 ± 1x10�3

e : N = 930

k 11514 ± 2213 4190 ± 184 4134 ± 165

k : N = 1955

k 43.3 ± 12 35.4 ± 12 31.1 ± 8
I 311 ± 8 338 ± 3 341 ± 4 I 967 ± 36 982 ± 16 982 ± 20

err 1.91 ± 0.72 1.41 ± 0.42 1.48 ± 0.59 err 8.2x10�3 6.2x10�3 6.7x10�3

±2x10�4 ±2x10�4 ±5x10�4

f : N = 838

k 148.8 ± 48 73.8 ± 18 72.5 ± 23

l : N = 2549

k 140.8 ± 28 100.8 ± 28 99.0 ± 12
I 520 ± 30 569 ± 13 568 ± 18 I 825 ± 51 851 ± 17 844±20

err 1.78 ± 0.83 1.58 ± 0.36 1.68 ± 0.56 err 0.05 0.02 0.02
±3.1x10�3 ±3.1x10�3 ±1.0x10�3

Table 5.2: Results on real data, for four estimation problems: homography (a-c), fundamental
matrix (d-f), essential matrix (g-i) and 3D similarity (j-l). The table lists the number of hypotheses
generated (k), the number of inliers returned (I), the total number of points (N), and the mean error
(err) for each of the three methods used: RANSAC, RANSAC with local optimization (LO), and
RECON. err is the mean over inliers with respect to the returned model (symmetric transfer error
for H and 3D similarity, Sampson distance for F and E). Units are in pixels for H, F and E. Note
that the error for 3D similarity is arbitrarily scaled. By using real world measurements, the error in
l was found to correspond to ⇡ 8 cm.

ability to adaptively stop evaluation is thus especially favourable when contrasted with current tech-

niques that use either a pessimistic estimate of the number of hypotheses (e.g., 10000 in (Wang and

Suter, 2004)) or a fixed time window (e.g., 60s in (Chin et al., 2010)).

From an application perspective, we have integrated RECON into our 3D reconstruction pipeline,

where it is applied to the output of sparse structure from motion. Often, these systems output mul-

tiple submodels that then need to be automatically aligned to obtain a complete reconstruction.

Figure 5.6 shows some sample results, where the colours (red/green) represent the individual sub-
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(a) (b)

(c) (d)

(e)

Figure 5.6: Alignment of 3D submodels using RECON. The colours (green/red) indicate di↵erent
3D submodels obtained via structure from motion. The alignment is computed automatically with
RECON. (a) and (b) are from an aerial video sequence, while (c)-(e) are reconstructions from an
internet photo collection representing the city of Berlin.
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models. Figures 5.6(a)-(b) show 3D models obtained from aerial video recordings. In this case,

video sequences were acquired by flying an airplane along parallel “stripes”, with small overlap

between neighbouring paths. Figure 5.6(c)-(e) show selected reconstructions from an internet photo

collection; in this case, 2.7 million images of the city of Berlin. The advantage of using RECON in

these large-scale systems is that it does not require any data specific parameter tweaking, and is still

e�cient enough to be deployed on real-world robust estimation problems.

5.5 Discussion

In this section, we have presented a new, threshold-free framework for robust estimation. In contrast

to prior work, we use consistency of models as a cue to detect model estimates that are close to the

true solution. We develop the theoretical framework, and then present a practical algorithm, RE-

CON, that can be used to e�ciently perform robust estimation. The algorithm is very simple, easy

to implement, and e↵ective in practice. RECON produces results of the same quality as algorithms

that specifically use fine-tuned parameter estimates. An additional benefit of the flexible consensus

measure we use, is the ability to elegantly adapt the number of samples drawn to the contamination

level of the data.

While these results are promising, there is room for improvement. Firstly, note that in this work,

we specifically address the issue of single model robust estimation. The issue of multiple models (or,

alternatively, a single model with structured outliers) is a harder problem to solve. While there exist

other approaches (e.g., Chin et al., 2009b; Wong et al., 2011) that address this problem, these are

still relatively ine�cient and not directly applicable to large scale problems. Being able to estimate

multiple models, while still retaining the adaptability of RANSAC and RECON is an interesting,

and challenging, problem.

While RECON is typically much more e�cient than current threshold-free methods, it still has

a significant computational overhead, particularly compared to the optimized RANSAC techniques

presented in Chapter 3. One reason for this is that in the absence of an inlier threshold, RECON

inspects model pairs to determine consistency. For the case of very low inlier ratios, where the

number of hypothesized models is large, this can lead to a significant overhead. We note that one

possible way to mitigate this e↵ect is to note that, given a set of previously generated models with
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sorted inlier sets, the goal in RECON is to retrieve the closest matches to a newly hypothesized

model, according to some similarity measure based on residual ordering. If each model in RECON

is viewed as a set of sorted inlier indices, this process requires estimating how similar two sets

are. E�cient methods – such as MinHash (Broder, 1997) – have been proposed for precisely this

problem. Integrating these techniques into RECON could yield siginificant computational benefits,

and potentially bring its performance on par with RANSAC, but without requiring the threshold

parameter.
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Chapter 6

Conclusion

6.1 Summary

Revisiting the dissertation statement from Chapter 1:

Given noisy and highly contaminated data measurements, it is possible to e�ciently and

accurately recover model parameter estimates, thus enabling real-time and large-scale appli-

cations. When the scale of noise is known, it is possible to compensate explicitly for this,

yielding improved performance. In addition, in the absence of noise scale, it is still possible

to perform e�cient robust estimation by looking for model consistency.

The dissertation statement highlights some of the challenges involved in robust estimation –

handling the e↵ects of noise and outliers in a manner that is e�cient, accurate, and flexible. These

are cruicial ingredients that are necessary in order for these algorithms to transition into challenging

real-world applications, operating on diverse and large datasets. This has motivated much of the

work in this dissertation. In Chapter 3, we described two algorithms: USAC and ARRSAC, which

represent state of the art implementations that bring together many optimizations and ideas, in order

to achieve high performance. We also demonstrated the use of an alternate source of prior infor-

mation, namely, the reliability of low-level visual words, in order to further improve performance.

This proves to be useful when processing large scale internet image collections.

In Chapter 4, we proposed a method to address the issue of noise in RANSAC, and in particular,

its e↵ect on the estimated model parameters. We characterize the uncertainty of the model in terms



of its covariance, and show how this can be used to develop a flexible method to compute the

support for an noisy model. We then integrated this into a robust estimation framework, which we

term cov-RANSAC, which achieves an improvement in e�ciency compared to standard techniques.

Finally, in Chapter 5, we developed a simple framework for threshold-free robust estimation,

called RECON. In lieu of a user-specified threshold parameter, RECON examines pairs of models

in order to identify consistent fits to the data. We explore the use of residual ordering information

in order to design an e�cient algorithm for threshold-free robust estimation.

Many of the algorithms developed in this dissertation have found application in real-world sys-

tems, operating on large-scale datasets. In particular, ARRSAC has been integrated into a 3D recon-

struction system operating on video sequences (Pollefeys et al., 2008), and has enabled vision-based

pose estimation to operate in real-time. ARRSAC and USAC have also found application in the pro-

cessing of large scale internet image collections (Frahm et al., 2010; Raguram et al., 2011; Raguram

et al., 2012b), where they have enabled the processing of millions of images – this is an order of

magnitude more data than other similar approaches (Agarwal et al., 2009). Recently, we have also

integrated RECON into this system, where it is applied to the output of sparse structure from mo-

tion, in order to merge submodels to obtain more complete 3D reconstructions. Manually adjusting

parameters is often not scalable when applied to these large scale problems, and the threshold-free

nature of RECON is appealing in this context.

6.2 Future Work

As noted in Chapter 2, the field of robust estimation is a very active one, with a rich variety of chal-

lenges and open problems. This dissertation has focused on one aspect of this problem – RANSAC-

based robust estimators – and we have proposed algorithms that improve upon the state of the art in

this area. There are also a number of interesting directions for future work:

Multi-model robust estimation: In this dissertation, we have focused on the issue of single model

robust estimation, which is one that arises frequently in practice. However, the issue of multiple

models is also important, and is a harder problem to solve. In addition, if it is assumed that the

scale of noise is unknown, this adds an additional layer of complexity. Many approaches have been

125



proposed to handle this case (Miller and Stewart, 1996; Lee et al., 1998; Wang and Suter, 2004;

Toldo and Fusiello, 2008; Chin et al., 2009b; Wong et al., 2011); however, these approaches are still

limited in their ability to adapt to the data, and often require other implicit assumptions to be made

(such as knowledge of the inlier ratio). As a consequence, these approaches have not yet found

widespread application in real-world systems. With RECON, we have explored the use of residual

information as a source of identifying consistent fits to the data. There have been complementary

approaches that apply similar ideas to the case of multi-model fitting (Chin et al., 2009b; Wong

et al., 2011). Combining the adaptivity of RECON with the multi-model estimation capability of

these approaches is an interesting, and challenging, direction for future work.

Reformulating RANSAC: In some applications, such as structure from motion, there are cases

where we have multiple hypothesis generators which provide alternate ways of computing the same

solution. For instance, the camera motion of a stereo rig can be computed from either line corre-

spondences, or point correspondences, or some combination of the two (Pradeep and Lim, 2010;

Chandraker et al., 2009). Standard RANSAC does not have a direct way to handle this problem,

and would thus involve estimating all competing models. An interesting way to think about robust

estimation in this context is to cast it as a multi-armed bandit problem (Gittins, 1989). Multi-armed

bandit (MAB) problems form a class of sequential resource allocation problems, which address the

issue of allocating one or more resources among several competing projects. In the MAB context,

each hypothesis generator can be viewed as a lever of a slot machine, with some (unknown) distri-

bution of rewards (in this case, the probability of drawing a good solution). The objective of the

bandit is to maximize the sum of rewards earned through a sequence of lever pulls. Solving this

problem typically involves the use of exploration (to figure out which levers, or hypothesis gener-

tors, are promising) and exploitation (to draw good samples from the promising levers). Applying

the machinery of MAB problems, along with the many algorithms developed in this area, to the

problem of robust estimation, is an interesting avenue for future work.

Incorporating higher-level knowledge: There have been approaches (see Section 3.2.2), that aim

to incorporate some form of prior information into RANSAC. While these methods are promising,
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there is significant scope for improvement. In this disseration, we explored one possibility – namely,

to use the information that arises as a byproduct of geometric verification in image collections – to

bias the sampling in favour of visual words that are more likely to be reliable. This idea can be

taken even further. For instance, one bottleneck in the verification process is the stage of feature

matching. Currently, this is usually done by matching SIFT descriptors between a pair of images,

in order to identify putative correspondences. However, since the SIFT descriptors for a large-scale

image collection have a significant memory footprint, they typically have to be loaded on demand

from disk. The use of visual words to directly perform feature matching has been explored to

some extent (Philbin et al., 2007), but there are challenges; this often leads to low inlier ratios, as

well as the problem of many-to-many feature matches. While we explored the use of visual word

weights in RANSAC, this idea can potentially be taken further. For instance, (Mikulı́k et al., 2010)

describes a way to use the output of geometric verification to link together words that are likely to

be related. Incorporating this typed of learned information into the feature matching stage as well,

could potentially yield a significant benefit. In addition, exploiting the co-occurrence relationships

between features is likely to help as well. For instance, if certain sets of visual words often tend

to occur together as inliers, then it should be possible to integrate this into the sampling scheme.

More specifically, given that a subset of size s < m has been picked, the selection of the s + 1th

point can be guided by this co-occurrence information. While this has been explored for the case of

image retrieval (Chum and Matas, 2010b), it should be possible to more directly integrate it into the

matching and verification stages as well.

Another source of prior information, again in regard to internet image collections, is via the use

of EXIF tags. These tags often provide an estimate of the focal length of the camera, in addition to

other metadata about the photo. It has been shown that this type of information can be leveraged

to seed structure from motion (Crandall et al., 2011). However, the use of this information within

RANSAC has not yet been fully leveraged. For instance, when computing the relative pose using

the 5-point algorithm, the focal length from the EXIF tags can be used to generate a prior on this

parameter. It may then be possible to sample essential matrices that are consistent with this prior

information, which could potentially yield a performance improvement.
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Appendix A

A.1 List of image pairs used

Below, we list the various image pairs used in the evaluation of the algorithms presented in this

dissertation. Links to the original sources are provided where available.

A.1.1 Homography

Images Notes
Gra�ti: Table 3.1, 4.1, 5.2.
Available at http://www.robots.ox.ac.uk/

˜

vgg/data/data-aff.html

Boston: Table 3.1.
Available at http://www.vision.cs.rpi.edu/gdbicp/dataset/

Castle: Table 3.1.
Available at http://cmp.felk.cvut.cz/

˜

cechj/SCV/

UNC-Wall: Table 3.1, 4.1, 5.2.
Available at http://cs.unc.edu/

˜

rraguram/usac

Albany-Empire-State: Table 3.1.
Available at
http://www.flickr.com/photos/wallyg/3812586429/ and
http://www.flickriver.com/photos/tags/

harrisonabramovitz/interesting/

Facade-Windows: Table 3.1, 4.1.
Available at http://www.vision.ee.ethz.ch/
showroom/zubud/index.en.html

OptiFree: Table 3.2.
Available at http://cs.unc.edu/

˜

rraguram/usac



Images Notes
Extreme Zoom: Table 3.2, 4.1, 5.2.
Available at http://www.vision.cs.rpi.edu/gdbicp/dataset/

Day-Night (Summer): Table 3.2.
Available at http://www.vision.cs.rpi.edu/gdbicp/dataset/

Cap. Reg.: Table 3.2.
Available at http://www.vision.cs.rpi.edu/gdbicp/dataset/

A.1.2 Epipolar geometry

Images Notes
Merton College: Table 3.3.
Available at http://www.robots.ox.ac.uk/

˜

vgg/data/data-mview.html

City-Hall-Leuven: Table 3.3, 3.7, 4.2, 5.2.
Available at http://cvlab.epfl.ch/data/strechamvs/

Oxford: Table 3.3, 3.7, 4.2.
Available at http://cs.unc.edu/

˜

rraguram/usac

Trees: Table 3.3.
Available at http://cmp.felk.cvut.cz/

˜

cechj/SCV/

London-Victoria: Table 3.3, 3.7.
Available at http://cmp.felk.cvut.cz/

˜

cechj/SCV/
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Images Notes
Great-Wall: Table 3.3, 4.2.
From (Chum and Matas, 2005), available at
http://cs.unc.edu/

˜

rraguram/usac

London-Gherkin: Table 3.4, 3.7, 4.2.
Available at
http://www.flickr.com/photos/andreiutza_ok/4140443295/

sizes/l/in/photostream/

http://www.flickr.com/photos/davidgardener/4536034140/

sizes/l/in/photostream/

Vision-Textbook: Table 3.4.
Available at http://cs.unc.edu/

˜

rraguram/usac

Box: Table 3.4.
From (Chum et al., 2005), available at
http://cs.unc.edu/

˜

rraguram/usac

Lamppost: Table 3.4.
From (Chum et al., 2005), available at
http://cs.unc.edu/

˜

rraguram/usac

Aerial: Table 3.5.
Available at http://cs.unc.edu/

˜

rraguram/usac

Vysehrad: Table 3.5.
Available at http://cmp.felk.cvut.cz/

˜

cechj/SCV/

Powder-Gate: Table 3.5, 5.2.
Available at http://cs.unc.edu/

˜

rraguram/usac

Louvre: Table 3.5, 5.2.
Available at http://cs.unc.edu/

˜

rraguram/usac
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Images Notes
Manhattan: Table 3.5, 5.2.
Available at http://cs.unc.edu/

˜

rraguram/usac

UNC-South-Building: Table 3.5.
Available at http://cs.unc.edu/

˜

rraguram/usac

Leuven-Castle: Table 3.7.
Available at http://www.cs.unc.edu/

˜

marc/data/castlejpg.zip

Begijnhof: Table 3.7.
Available at http://cs.unc.edu/

˜

rraguram/usac

Rotunda: Table 5.2.
Available at http://cmp.felk.cvut.cz/projects/is3d/Data.html

Valbonne: Table 5.2.
Available at http://www.robots.ox.ac.uk/

˜

vgg/data/data-mview.html

A.1.3 Motion Segmentation

Images Notes
Tra�c-1: Table 3.6.
Available at http://www.vision.jhu.edu/data/hopkins155/

Tra�c-2: Table 3.6.
Available at http://www.vision.jhu.edu/data/hopkins155/

Desk-1: Table 3.6.
Available at http://cs.unc.edu/

˜

rraguram/usac

Desk-2: Table 3.6.
Available at http://cs.unc.edu/

˜

rraguram/usac
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